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Abstract

We study PAC learning in the presence of strate-
gic manipulation, where data points may modify
their features in certain predefined ways in or-
der to receive a better outcome. We show that
the vanilla ERM principle fails to achieve any
nontrivial guarantee in this context. Instead, we
propose an incentive-aware version of the ERM
principle which has asymptotically optimal sam-
ple complexity. We then focus our attention on
incentive-compatible classifiers, which provably
prevent any kind of strategic manipulation. We
give a sample complexity bound that is, curiously,
independent of the hypothesis class, for the ERM
principle restricted to incentive-compatible clas-
sifiers. This suggests that incentive compatibility
alone can act as an effective means of regulariza-
tion. We further show that it is without loss of
generality to consider only incentive-compatible
classifiers when opportunities for strategic ma-
nipulation satisfy a transitivity condition. As a
consequence, in such cases, our hypothesis-class-
independent sample complexity bound applies
even without incentive compatibility. Our results
set the foundations of incentive-aware PAC learn-
ing.

1. Introduction
Consider the following scenario. A financial institution
plans to offer a product to a selected group of customers,
and decides that the only thing that should matter in the se-
lection process is the amount of money she currently owns
in savings (possibly held at a different financial institution).
Each customer may prove her savings balance by submit-
ting a bank statement, and the number shown therein will
be used for the selection. However, customers may choose
to underreport their balance, by, for example, temporarily
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transferring their money to another account before the state-
ment date. (We assume for the purpose of this example that
overreporting is not possible.) The question is, how does
this ability of customers to strategically underreport their
balance affect the selection process?

The answer, as one would expect, depends on the specific
criteria of the selection, which are presumably determined
by the nature of the product. For instance, the product could
be a secured loan that requires the customer to use the sav-
ings for collateral. In that case, customers will benefit from
their balance being as high as possible, which means they
would submit a statement with the full balance. As a result,
the fact that customers can underreport would not affect the
selection at all. Alternatively, the financial institution could
be a non-profit entity that aims to make a product available
only to those with low savings. In that case, every customer
who wants access to this product would underreport her
balance in order to be approved, and this would make the
selection effectively meaningless.

More generally, often the right criteria for the selection may
not be clear a priori, but have to be learned from observa-
tions. In such cases, the decision maker (e.g., the institution)
has access to labeled historical data (e.g., the amount of
savings owned by some customer, and whether the prod-
uct was successful for the same customer). A classifier
(e.g., selection criteria) is derived from the data and imple-
mented, to which future data points (e.g., new customers) to
be classified respond in a strategic way. The goal, naturally,
is to classify future data points as accurately as possible,
taking into account that their features may be strategically
modified. The key challenge is for the classifier derived to
generalize from past observations to future strategic data
points. Such problems are partially captured by the PAC
learning model (discussed in detail below), but also exhibit
additional complexity from strategic manipulation of the
features, where the nature of this manipulation is affected by
the choice of classifier. In this paper, we investigate novel
phenomena in PAC learning introduced by the presence of
strategic manipulation.

Our results. Two central questions in PAC learning are
the following: statistically, how many labeled data points
does one need to observe in order to derive a classifier
of a desired quality, and computationally, given this many
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labeled data points, how can one compute such a classi-
fier? We answer these questions for arbitrary feature spaces
and structures of strategic manipulation, by presenting an
adapted version of the empirical risk minimization (ERM)
principle, which roughly says that one should simply pick a
classifier that has the best quality on the labeled data points
that are observed. We show that our incentive-aware version
of the ERM principle requires asymptotically the minimum
possible number of labeled data points for any specific prob-
lem setup. This can be viewed as a strategic version of
the VC theory, one of the central results in traditional PAC
learning.

We further consider incentive-compatible classifiers, which
provably prevent any kind of strategic manipulation by mak-
ing revealing one’s true feature always optimal for any data
point. Here, our most remarkable result is a hypothesis-
class-independent bound on the number of labeled data
points required to compute an incentive-compatible classi-
fier of a desired quality. In traditional PAC learning, it is well
known that without any prior knowledge about the ground
truth (typically modeled by a hypothesis class consisting
of possible classifiers to be considered), it is impossible to
learn anything nontrivial, unless the number of labeled data
points observed is trivially large or even infinite. By con-
trast, we show that in the presence of strategic manipulation,
it is possible to learn a nontrivial classifier via our strategic
version of the ERM principle without any such prior knowl-
edge, except that the classifier learned has to be incentive-
compatible. In other words, incentive-compatibility acts as a
means of regularization, which provides nontrivial learning
guarantees in and of itself.

Moreover, when the structure of strategic manipulation is
transitive (i.e., if A can pretend to be B and B can pre-
tend to be C, then A can pretend to be C), considering
incentive-compatible classifiers is without loss of generality
— this is commonly known as the revelation principle in eco-
nomic theory. This, together with our results for incentive-
compatible classifiers, implies that ERM-type learning in
the presence of transitive strategic manipulation is automati-
cally regularized. That is, the hypothesis-class-independent
bound discussed above applies even without any exogenous
requirement of incentive compatibility (since requiring this
condition is without loss of generality), or any other prior
knowledge.

Related work. There is an extremely rich body of re-
search on PAC learning (Valiant, 1984). Since the enlighten-
ing result by Vapnik & Chervonenkis (1971), various mea-
sures of complexity have been studied (Alon et al., 1997;
Bartlett & Mendelson, 2002; Pollard, 2012; Daniely et al.,
2015), and tighter sample complexity bounds have been
developed (Talagrand, 1994; Hanneke, 2016). See, e.g.,
(Devroye et al., 2013; Shalev-Shwartz & Ben-David, 2014)

for a comprehensive exposition of PAC learning.

A closely related research topic is strategic machine learning,
where it is commonly assumed that strategic agents seek
to maximize their utility by modifying their features in
certain restricted ways, often at some cost (Hardt et al.,
2016; Kleinberg & Raghavan, 2019; Haghtalab et al., 2020).
Specific topics include strategic aspects of linear regression
(Perote & Perote-Pena, 2004; Dekel et al., 2010; Chen et al.,
2018) and online learning (Roughgarden & Schrijvers, 2017;
Braverman et al., 2019; Feng et al., 2019; Freeman et al.,
2020). Our results differ from the above in that we consider
a PAC model, where the key challenge is to generalize from
observations to future data points to be classified. Also, we
consider arbitrary feature spaces and structures of strategic
manipulation, while existing results often focus on relatively
restrictive setups, e.g., linear models.

Another closely related line of research is mechanism design
with partial verification (Green & Laffont, 1986; Yu, 2011;
Kephart & Conitzer, 2015; 2016), which is often motivated
by similar considerations as strategic machine learning. The
general problem considered there is to design an (approx-
imately) optimal mechanism assigning outcomes to data
points based on their features, where the authenticity of the
features can only be partially verified. Particularly relevant
is a series of papers by Zhang et al. with a pronounced
learning aspect (Zhang et al., 2019b;a). The main difference
between our results and theirs is that in our model, the un-
derlying distribution of data is only accessible via samples
observed, and we do not restrict the structure of possible
strategic manipulation.

2. Preliminaries
In this section, we review relevant definitions and results in
PAC learning, and formulate the notion of strategic manipu-
lation in classification.

2.1. Background on PAC Learning

Our problems of interest fit well with the probably approx-
imately correct (PAC) learning model (Valiant, 1984). In
PAC learning, there is a feature space X , a label space
Y , and a joint population distribution D ∈ ∆(X × Y)
over the feature space and the label space. For a classi-
fier f : X → Y , the population loss `D(f) is defined as the
probability that f assigns a wrong label to a random point
with respect to D, i.e., `D(f) = Pr(x,y)∼D[f(x) 6= y]. The
goal of PAC learning, with target relative loss ε > 0 and
failure probability δ > 0, is to find a classifier f ∈ H from
a predetermined hypothesis class H ⊆ YX , by observing
m = m(ε, δ) iid samples fromD, such that with probability
at least 1 − δ, the population loss of f , `D(f), is at most
`D(H) + ε, where `D(H) is the population loss of the best
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classifier in H, i.e., `D(H) = minf ′∈H `D(f ′). `D(H) is
sometimes called the approximation error, which models
how well the hypothesis classH approximates the ground
truth classifier. Throughout this paper, we focus on binary
labels, i.e., Y = {0, 1}.

The two central questions of PAC learning discussed earlier
are partially answered by the ERM principle, formally de-
fined below. Given m iid samples S = {(xi, yi)}i ∼ Dm,1

the ERM principle finds a classifier f ∈ H which minimizes
the empirical loss `S(f) on S, defined as

`S(f) =
1

|S|
∑

i∈[|S|]

|f(xi)− yi|.

That is, the ERM principle finds f ∈ argminf ′∈H `S(f ′).
This gives a concrete, though not always efficient, way of
computing a classifier — it is known that with sufficiently
many samples, the classifier found by the ERM principle
achieves the desired loss and failure probability. Moreover,
the number of samples (also known as the sample com-
plexity) required by the ERM principle is optimal up to a
constant factor.2 This sample complexity is asymptotically
determined by the so-called VC dimension of the hypothesis
classH, defined below.
Definition 1 (VC Dimension). A subset S of the feature
space X is shattered by a hypothesis class H, if for any
T ⊆ S, there is a classifier c ∈ H such that c ∩ S = H .
The VC dimension ofH, dVC(H), is the cardinality of the
largest subset of X that is shattered byH, i.e.,

dVC(H) = max
{
|S|
∣∣∣ |{f ∩ S | f ∈ H}| = 2|S|

}
.

The VC dimension captures the capacity of the hypothesis
class H. The larger the capacity is, the more samples it
takes to find an approximately optimal classifier inH. More
precisely, the sample complexity of ERM is given by the
following theorem (see, e.g., (Shalev-Shwartz & Ben-David,
2014)).
Theorem 1 (Sample Complexity of ERM). Fix a feature
space X , a population distribution D, and a hypothesis
classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(H) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1 − δ,
any classifier f ∈ H minimizing the empirical loss on
S, i.e., f ∈ argminf ′∈H `S(f ′), has population loss at
most `D(f) ≤ `D(H) + ε. Moreover, finding any classifier
achieving the same relative loss ε and failure probability δ
requires Ω

(
(dVC(H) + log(1/δ))/ε2

)
iid samples.

1We treat S as an unordered set, since the order does not carry
information.

2This is true only in the agnostic setting where `D(H) > 0, on
which we focus our attention throughout the paper. Similar results
can be established for the realizable setting where `D(H) = 0.

The above theorem says that the ERM principle finds an
approximately optimal (up to an additive loss ε) classifier
within H, with an asymptotically optimal number of sam-
ples. In other words, the low empirical loss of the classifier
found by the ERM principle generalizes with respect to the
population distribution D.

2.2. Strategic Manipulation in Classification

In the classical PAC learning model, the classifier always
observes the real feature of the point being classified. How-
ever, as argued above, this is often not the case in real-life
scenarios, where the point being classified may strategically
modify its feature in order to receive a more desirable out-
come. In this paper, we model the data point’s ability to
modify its feature using a binary relation →, which cap-
tures the reporting structure over the feature space. For
x1, x2 ∈ X , we say x1 → x2 if a point with feature x1 can
pretend to have (i.e., report) feature x2. For any x ∈ X ,
we always have x → x, corresponding to the fact that the
point may choose not to modify its feature.3 Throughout
the paper, we assume that all points being classified pre-
fer label 1 (corresponding to, e.g., acceptance) to 0. As
a result, fixing a misreporting structure→ and a classifier
f : X → {0, 1}, a point with feature x will pretend to
have feature x′ such that f(x′) = 1 whenever possible, i.e.,
it will report x′ ∈ argmaxx′′:x→x′′ f(x′′). Note that it is
possible that x′ = x. This can happen when f(x) = 1, or
f(x′′) = 0 for any x′′ all x′′ such that x→ x′′, including x
itself.4

In the rest of the paper, we focus on the following variant of
the PAC learning model. The learning algorithm has access
to m iid unmodified samples {(xi, yi)}i ∼ Dm, based on
which a classifier f ∈ H is computed.5 The classifier f is
then deployed, and random points drawn from D modify
their features strategically in response to the classifier. The
strategic population loss of f , taking into consideration
strategic manipulation, can be computed as

̂̀D(f) = Pr
(x,y)∼D

[
max

x′:x→x′
f(x′) 6= y

]
.

Again, the goal is to find a classifier f ∈ H with strategic
population loss at most ̂̀D(H) + ε, with probability at least
1− δ, where ̂̀D(H) = minf ′∈H ̂̀D(f ′).

3Note that this is not a technical requirement — all results in
this paper still hold without this assumption.

4A seemingly more general model is one in which there is a
cost c(x, x′) ≥ 0 for a point with feature x to report feature x′.
We remark that with binary labels, it is without loss of generality
to ignore this cost, since a way of reporting is feasible iff the gain
of receiving label 1 is larger than the cost of reporting.

5Since each data point is only classified once, data points in the
sample set observed by the learner have no incentive to manipulate
the learning process, and thus will not modify their features.
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3. Incentive-Aware Empirical Risk
Minimization

In this section, we investigate the ERM principle in the
presence of strategic manipulation. We first give an example,
showing that the vanilla ERM principle, which ignores the
strategic aspect of the problem, has poor performance in
general. We then consider an incentive-aware variant of
ERM, and analyze its generalization behavior.

3.1. How Vanilla ERM Fails

Consider the following example. The feature space X =
{x1, x2, x3}, the hypothesis classH = 2X , and the popula-
tion distribution D assigns probability 0.5 to feature-label
pair (x1, 0), and probability 0.5 to (x2, 1). The reporting
structure allows (besides x → x for any x ∈ X ) x1 → x2
and x2 → x3. Note that since the feature space is extremely
simple, even the power setH = 2X (which has VC dimen-
sion dVC(H) = 3) exhibits decent generalization behavior
without strategic manipulation. Recall that the vanilla ERM
principle finds an arbitrary classifier which minimizes the
empirical loss based on the unmodifed sample set. Suppose
the number of samples m = ω(1). Then with high probabil-
ity, the sample set consists of copies of (x1, 0) and (x2, 1)
and nothing else. Any classifier f satisfying f(x1) = 0
and f(x2) = 1 achieves 0 empirical loss. However, with
strategic manipulation, such an f ends up assigning label
1 to all (new) points whose (true) feature is x1, since those
points can report x2 to fool the classifier. As a result, the
strategic population loss is

̂̀D(f) = Pr
(x,y)∼D

[
max

x′:x→x′
f(x′) 6= y

]
≥ 0.5 ·

∣∣∣∣ max
x′:x1→x′

f(x′)− 0

∣∣∣∣
= 0.5 · |f(x2)− 0| = 0.5.

In other words, with high probability, any classifier found
using the vanilla ERM principle is no better than random
guessing. But in fact, the classifier f ′ with f ′(x1) =
f ′(x2) = 0 and f ′(x3) = 1 would have 0 loss with
strategic behavior, because maxx′:x1→x′ f ′(x′) = 0 and
maxx′:x2→x′ f ′(x′) = f ′(x3) = 1. Hence it is possible to
do much better than vanilla ERM.

The above example shows that with strategic manipulation,
the vanilla ERM principle fails spectacularly even in ex-
tremely simple cases that would be trivial without strategic
manipulation. This observation aligns with the intuition that
any learning procedure achieving nontrivial performance
must exploit the reporting structure.

3.2. The Incentive-Aware ERM Principle

Below we present an incentive-aware version of the ERM
principle (henceforth IA ERM), and show that (1) IA ERM
finds a classifier with the desired properties, and (2) the sam-
ple complexity of IA ERM is asymptotically optimal. These
properties of IA ERM closely resemble those of its classical
counterpart without strategic manipulation, and suggests
that IA ERM is the right version of the ERM principle in
the strategic setting that we consider.

Incentive-aware ERM. The idea is to minimize the
strategic empirical loss ̂̀S(f) on the sample set S =
{(xi, yi)}i, computed by replacing the true feature of every
sample point with the most beneficial feature that the point
can report, i.e.,

̂̀
S(f) =

1

|S|
∑

i∈[|S|]

∣∣∣∣ max
x′:xi→x′

f(x′)− yi
∣∣∣∣ .

The strategic empirical loss is a natural quantity to con-
sider, since the expectation of ̂̀S(f) over S is precisely the
strategic population loss ̂̀D(f), which we aim to minimize.
Given the notion of strategic empirical loss, IA ERM sim-
ply finds any classifier f in the hypothesis class H which
minimizes ̂̀S(f), i.e., f ∈ argminf ′∈H

̂̀
S(f ′).

We now analyze the generalization behavior of IA ERM.
Recall that in the classical PAC setting without strategic
manipulation, the sample complexity of ERM depends on
the VC dimension of the hypothesis class H. Here, with
strategic manipulation, it appears that the VC dimension
of H is no longer the right capacity measure to consider.
Instead ofH, we consider the effective hypothesis class Ĥ,
defined below.

Definition 2 (Effective Classifier / Hypothesis Class). Fix-
ing a feature space X and a reporting structure→, for each
classifier f ⊆ X , the effective classifier f̂ consists of the set
of features to which f effectively assigns label 1, i.e.,

f̂ = {x ∈ X | ∃x′ : x→ x′, f(x′) = 1}.

Fixing a hypothesis classH, the effective hypothesis class
Ĥ consists of the effective classifier of every classifier inH,
i.e., Ĥ = {f̂ | f ∈ H}.

One may intuitively interpret the effective hypothesis class
in the following way. Any classifier f in the presence of
strategic manipulation is equivalent to the effective classifier
f̂ without strategic manipulation. Therefore, by considering
the effective hypothesis class Ĥ, we can effectively ignore
strategic manipulation, and reduce the generalization analy-
sis to that in the classical PAC setting, i.e., Theorem 1. This
gives us the following theorem.
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Theorem 2 (Sample Complexity of IA ERM). Fix a feature
space X , a population distribution D, a reporting structure
→, and a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(

(dVC(Ĥ) + log(1/δ))/ε2
)

iid samples S ∼ Dm, with probability at least 1 − δ, any
classifier f ∈ H minimizing the strategic empirical loss
on S, i.e., f ∈ argminf ′∈H

̂̀
S(f ′), has strategic popula-

tion loss at most ̂̀D(f) ≤ ̂̀D(H) + ε. Moreover, finding
any classifier achieving the same relative loss ε and fail-
ure probability δ requires Ω

(
(dVC(Ĥ) + log(1/δ))/ε2

)
iid samples.

The proof of Theorem 2, as well as all other proofs, are in
Appendix A. In words, the above theorem says that IA ERM
finds a classifier whose strategic population loss is close to
the best classifier in the hypothesis classH, and the sample
complexity of finding such a classifier is determined by the
VC dimension of the effective hypothesis class Ĥ, rather
than that ofH itself.

We make a few remarks regarding IA ERM. First, when the
reporting structure→ is trivial, i.e., a point with feature x
can only report x itself, then the effective class Ĥ = H, and
IA ERM reduces to vanilla ERM. In such cases, Theorem 2
reduces precisely to the classical Theorem 1. Second, in
general, the VC dimension dVC(Ĥ) of the effective class Ĥ
may be smaller or larger than that ofH. Indeed, as we show
in Appendix B, either of the two quantities can be arbitrarily
larger than the other.

4. Incentive-Compatible Empirical Risk
Minimization

The IA ERM principle, together with Theorem 2, provides
a rather general solution for PAC learning in the presence
of strategic manipulation. Still, one may wonder whether
it is possible to achieve more desirable properties, e.g., en-
hanced robustness against strategic manipulation and better
generalization guarantees, by further refining/regularizing
IA ERM. In this section, we propose incentive compatibility
as a means of regularization, which leads to the incentive-
compatible ERM principle (henceforce IC ERM).

We first present the IC ERM principle and provide a gen-
eral analysis of its sample complexity in Section 4.1. In
particular, we show that IC ERM generalizes no worse than
IA ERM when applied to the same hypothesis class. In
Section 4.2, we consider a special case of IC ERM, free IC
ERM, where the hypothesis class H is implicitly all pos-
sible classifiers over the feature space X , i.e., H = 2X .
We give an efficient algorithm for free IC ERM, and more
importantly, we show that, somewhat surprisingly, it is still
possible to derive nontrivial generalization bounds for free

IC ERM. Based on the generalization analysis of free IC
ERM, we provide a hypothesis-class-independent sample
complexity bound for IC ERM, which further illustrates
the power of incentive compatibility as a means of regu-
larization. Finally, in Section 4.3, we discuss an important
class of reporting structures, i.e., transitive reporting struc-
tures, on which IC ERM is equivalent to the more general
IA ERM. Based on this equivalence, we give a hypothesis-
class-independent sample complexity bound for IA ERM
that applies whenever the reporting structure is transitive.

4.1. The Incentive-Compatible ERM Principle

First we introduce the notions of incentive-compatible clas-
sifiers and hypothesis classes. Incentive compatibility is
a standard concept in mechanism design and straightfor-
wardly applying it in our context results in the following
definition.
Definition 3 (Incentive-Compatible Classifiers / Hypothesis
Classes). Fixing a feature space X and a reporting structure
→, a classifier f : X → {0, 1} is incentive compatible if
for any x1, x2 ∈ X ,

x1 → x2 =⇒ f(x1) ≥ f(x2).

In other words, no point can receive a better outcome by pre-
tending to have a different feature. A hypothesis classH is
incentive compatible if it contains only incentive-compatible
classifiers.

The intuition behind the definitions is simple: when an
incentive-compatible classifier is deployed, no point is mo-
tivated to strategically modify its feature, since it is impos-
sible to obtain a better outcome by doing so. As a result,
the effective classifier induced by any incentive-compatible
classifier f is itself, i.e., f̂ = f , and the strategic (empirical)
loss of an incentive-compatible classifier f is the same as
the (empirical) loss of the same classifier without strategic
manipulation, i.e., ̂̀D(f) = `D(f) and ̂̀S(f) = `S(f).
Incentive-compatible classifiers therefore provide arguably
the strongest robustness one may hope for against strategic
manipulation — they eliminate strategic manipulation. The
IC ERM principle presented below always finds a classifier
that is incentive compatible.

Incentive-compatible ERM. For any hypothesis classH,
let the incentive-compatible subclassHIC(→) be the largest
subset ofH that is incentive compatible under→, i.e.,

HIC(→) = {f ∈ H | f is incentive compatible under →}.

We omit the parameter→ when it is clear from the context.
Given a hypothesis class H, the IC ERM principle finds
any classifier f in the incentive-compatible subclass HIC

minimizing the empirical loss `S(f) on the sample set S,
i.e., f ∈ argminf ′∈HIC `S(f ′) = argminf ′∈HIC

̂̀
S(f ′).
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We now analyze the sample complexity of IC ERM. Ob-
serve that IC ERM with hypothesis classH is equivalent to
vanilla ERM with hypothesis classHIC. Therefore, apply-
ing Theorem 1 to HIC, we immediately obtain the follow-
ing asymptotically optimal sample complexity bound for IC
ERM.

Theorem 3 (Sample Complexity of IC ERM). Fix a feature
space X , a population distribution D, a reporting structure
→, and a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(HIC) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1 − δ,
any classifier f ∈ HIC minimizing the empirical loss on
S, i.e., f ∈ argminf ′∈HIC `S(f ′), has strategic popula-
tion loss at most ̂̀D(f) ≤ ̂̀D(HIC) + ε. Moreover, find-
ing any incentive-compatible classifier withinH achieving
the same relative loss ε and failure probability δ requires
Ω
(
(dVC(HIC) + log(1/δ))/ε2

)
iid samples.

Theorem 3 is but a direct application of the classical Theo-
rem 1. To obtain further insights into the sample complexity
of IC ERM, we need to take a closer look at the VC di-
mension of the incentive-compatible subclassHIC, which
dictates the sample complexity. As discussed above, IC
ERM can be viewed as a regularized version of IA ERM.
Below we formalize this intuition, by showing that the sam-
ple complexity of IC ERM is in fact no larger than that of
IA ERM, or that of vanilla ERM, when applied to the same
hypothesis classH. This is done in the following claim via
upper bounding the VC dimension ofHIC by that of Ĥ, as
well as that ofH.

Proposition 1. Fixing a feature space X and a reporting
structure →, for any hypothesis class H over X , HIC ⊆
H ∩ Ĥ. As a result, dVC(HIC) ≤ min{dVC(H), dVC(Ĥ)}.

In many natural scenarios, the VC dimension of HIC is
significantly smaller than dVC(Ĥ) (see Appendix B for ex-
amples). So, in addition to the highly desirable property
of incentive compatibility, IC ERM also has at most the
same, and often much better sample complexity than IA
ERM, which translates to better generalization fixing the
number of samples. We also remark that IC ERM finds an
approximately optimal classifier in the incentive-compatible
subclassHIC, which may have a worse approximation error
thanH. In other words, to achieve incentive compatibility,
one in general has to sacrifice some accuracy in the form
of a larger approximation error. We will see more desirable
properties of IC ERM in the rest of this section.

4.2. Free IC ERM and Generalization from Incentive
Compatibility

We now consider free IC ERM, which is a special case of
IC ERM where the hypothesis class consists of all possible

classifiers over X , i.e., H = H0 = 2X . At first glance
this may appear senseless — in the classical PAC setting
without strategic manipulation, no (nontrivial) generaliza-
tion is possible if nothing is known about the ground truth a
priori, i.e., when the hypothesis class consists of all possi-
ble classifiers. However, as we show below, the reporting
structure, together with the requirement of incentive compat-
ibility, in fact induces nontrivial structure over the incentive-
compatible subclass HIC

0 , which allows nontrivial sample
complexity and generalization bounds. These structures are
captured by the following complexity measure, which we
term the intrinsic VC dimension.

Definition 4 (Intrinsic VC Dimension). Fix a reporting
structure → over a feature space X . For any x, x′ ∈ X ,
we say x can reach x′ (denoted x ⇒ x′) if there exists a
sequence of features x1, . . . , xk for some integer k > 0,
such that x1 = x, xk = x′, and for any i ∈ [k − 1],
xi → xi+1. A set of features S ⊆ X is independent if
for any x, x′ ∈ S where x 6= x′, x cannot reach x′. The
intrinsic VC dimension of → over X , dVC(X ,→), is the
cardinality of any maximum subset of X that is independent,
i.e.,

dVC(X ,→) = max{|S| | S ⊆ X :6 ∃x, x′ ∈ S
such that x 6= x′ and x⇒ x′}.

It turns out that the intrinsic VC dimension of the reporting
structure is precisely the VC dimension of the incentive-
compatible subclassHIC

0 of the null hypothesis classH0, as
formalized in the following proposition.

Proposition 2 (VC Dimension of Null Hypothesis Class).
For any feature space X and reporting structure→ over X ,
dVC(X ,→) = dVC(HIC(→)

0 ), where H0 = 2X is the null
hypothesis class.

Note that for any hypothesis class H ⊆ 2X = H0 over X ,
the incentive-compatible subclass ofH is a subclass of that
of the null hypothesis class H0, i.e., HIC ⊆ HIC

0 . As a
result, we always have

dVC(HIC) ≤ dVC(HIC
0 ) = dVC(X ,→).

This, together with Theorem 3, immediately implies the
following hypothesis-class-independent sample complexity
bound for IC ERM, which, in particular, applies to free IC
ERM.

Theorem 4 (Hypothesis-Class-Independent Sample Com-
plexity Bound for IC ERM). Fix a feature space X , a
population distribution D, a reporting structure →, and
a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1 − δ,
any classifier f ∈ HIC minimizing the empirical loss
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on S, i.e., f ∈ argminf ′∈HIC `S(f ′), has strategic pop-
ulation loss ̂̀D(f) ≤ ̂̀D(HIC) + ε. Moreover, when
the hypothesis class H is the null hypothesis class H0,
finding any incentive-compatible classifier achieving the
same relative loss ε and failure probability δ requires
Ω
(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples.

We also present an efficient algorithm for free IC ERM in
Appendix C.

4.3. Transitive Reporting and the Revelation Principle

Finally, we investigate an important family of reporting
structures, transitive reporting structures. It turns out that
with transitivity, the so-called revelation principle from
mechanism design holds: if one accounts for strategic re-
porting, then without loss of generality one may focus on
incentive-compatible classifiers. That is, IC ERM is as gen-
eral as IA ERM. As a result, with transitivity, the hypothesis-
class-independent sample complexity bound extends to IA
ERM applied to any hypothesis class. We first give the
formal definition of transitive reporting structures, which is
essentially the same as that of transitive binary relations.

Definition 5 (Transitive Reporting Structures). A reporting
structure→ over X is transitive if for any x1, x2, x3 ∈ X ,
(x1 → x2 and x2 → x3) =⇒ x1 → x3.

One example of transitive reporting structures is the ex-
ample from the introduction, where X = R+, and → is
precisely the same as ≥, which is clearly transitive (see
Appendix B for more details). It turns out that transitivity of
reporting structures is equivalent to the revelation principle
holding, which roughly says that any classifier is equiva-
lent to a (possibly different) incentive-compatible classifier.
Formally:

Proposition 3 (Revelation Principle for PAC Learning).
The following is true if and only if the reporting structure
is transitive: for any classifier f : X → {0, 1}, the effec-
tive classifier f̂ is incentive compatible, and as a result, for
any hypothesis class H, the effective class Ĥ is incentive-
compatible (i.e., (Ĥ)IC = Ĥ).

In light of Proposition 3, when the reporting structure is
transitive, for any H, IA ERM with hypothesis class H
is equivalent to IC ERM with hypothesis class Ĥ, in the
sense that they yield the same effective classifier given any
sample set, with the same sample complexity. This gives us
a way to translate the hypothesis-class-independent sample
complexity bound for IC ERM to IA ERM, and obtain the
following theorem.

Theorem 5 (Hypothesis-Class-Independent Sample Com-
plexity Bound for IA ERM). Fix a feature space X , a pop-
ulation distribution D, a transitive reporting structure→,

and a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1 − δ, any
classifier f ∈ H minimizing the strategic empirical loss on
S, i.e., f ∈ argminf ′∈H

̂̀
S(f ′), has strategic population

loss ̂̀D(f) ≤ ̂̀D(H) + ε. Moreover, when the hypothesis
classH is the null hypothesis classH0, finding any classifier
achieving the same relative loss ε and failure probability δ
requires Ω

(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples.

To develop some intuition, consider again the introductory
example. As discussed above, there, X = R+ and → =
≥ is transitive, and the intrinsic VC dimension of → is
dVC(X ,→) = 1. In fact, any classifier f ∈ 2X effectively
implements a threshold θf , where f(x) = 1 iff x ≥ θf
or x > θf (see Appendix B for more details). It is well-
known (see, e.g., (Shalev-Shwartz & Ben-David, 2014)) that
Θ(log(1/δ)/ε2) samples suffice to learn such a threshold
with relative loss ε and failure probability δ, which coincides
with the above sample complexity bound.
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Broader Impact
Potential positive impact:

• Our results can be applied, for example, to prevent
fraud.

• Naı̈ve learning processes that do not anticipate strategic
behavior will not perform at all as expected in practice,
creating substantial risk.

• Our results could make a socially beneficial classifica-
tion process more accurate.

• By encouraging truthful reporting, our results could
allow for more efficient allocation of resources to those
in actual need.

• Classifiers that are not incentive compatible result in
strategic behavior being advantageous to individuals.
Vulnerable communities often are not aware of this or
do not know how to play the game strategically, ex-
acerbating inequality. Incentive compatible classifiers
remove this concern. (Similar arguments have been
made for the use of incentive compatible mechanisms
in allocating students to public schools, where wealth-
ier parents often know how to play the game better.)

Potential negative impact:

• Our results could make a socially harmful classification
process more accurate.

• Our results encourage entities being classified to report
their true features, which, if handled carelessly, could
result in privacy issues.
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A. Omitted Proofs
Proof of Theorem 2. First observe that for any classifier f ∈ 2X , the strategic population loss ̂̀D(f) = `D(f̂), and the
strategic empirical loss ̂̀S(f) = `S(f̂). The plan is to apply Theorem 1 to the effective hypothesis class Ĥ. Let

f ∈ argminf ′∈H
̂̀
S(f ′) = argminf ′∈H `S(f̂ ′).

We then have
f̂ ∈ argminf ′∈Ĥ `S(f ′).

That is, f̂ is a minimizer of `S in Ĥ. By Theorem 1, with m samples, with probability at least 1− δ,

`D(f̂) ≤ `D(Ĥ) + ε = ̂̀D(H).

On the other hand, Theorem 1 states that finding such an f̂ in Ĥ with relative loss ε and failure probability δ requires
asymptotically the same number of samples. This conlcudes the proof of the theorem.

Proof of Theorem 3. Theorem 3 is a direct corollary of Theorem 1 (or Theorem 2 which is more general). Applying
Theorem 1 with hypothesis classHIC, we immediately obtain that with m samples, for any

f ∈ argminf ′∈HIC `S(f ′),

with probability 1− δ,
`D(f) ≤ `D(HIC) + ε.

And moreover, the number of samples is asymptotically tight. On the other hand, sinceHIC is incentive-compatible,

argminf ′∈HIC `S(f ′) = argminf ′∈HIC
̂̀
S(f ′),

and ̂̀D(f) ≤ ̂̀D(HIC) + ε.

This concludes the proof.

Proof of Proposition 1. For any f ∈ HIC, since f is incentive-compatible, we have

f = f̂ ∈ Ĥ,

and thereforeHIC ⊆ Ĥ. On the other hand, by definition,HIC ⊆ H. This implies thatHIC ⊆ H ∩ Ĥ.

Proof of Proposition 2. First we show dVC(HIC
0 ) ≥ dVC(X ,→). Let S ⊆ X be an independent subset ofX with cardinality

dVC(X ,→). Such a subset exists by the definition of dVC(X ,→). We argue that S can be shattered by HIC
0 . For any

T ⊆ S, we construct a classifier fT ∈ HIC
0 such that for any x ∈ S, fT (x) = 1 ⇐⇒ x ∈ T . Let fT be such that

fT (x) =

{
1, if there exists x′ ∈ T : x⇒ x′

0, otherwise.

We only need to check that fT is incentive-compatible. Suppose otherwise, i.e., there exist x1, x2 ∈ X , such that x1 → x2,
fT (x1) = 0, and fT (x2) = 1. It must be the case that for some x3 ∈ T , such that x2 ⇒ x3. Then, by definition, we have
x1 ⇒ x3, and therefore it should be the case that fT (x1) = 1, a contradiction.

Now we show dVC(HIC
0 ) ≤ dVC(X ,→). That is, for any subset S ⊆ X where |S| > dVC(X ,→), S cannot be shattered

byHIC
0 . By the definition of dVC(X ,→), S cannot be independent. Let x, x′ ∈ S be such that x⇒ x′. Furthermore, let

x = x1, x2, . . . , xk−1, xk = x′ ∈ X

be a sequence through which x can reach x′, i.e., for any i ∈ [k− 1], xi → xi+1. We show that for any incentive-compatible
f , it cannot be the case that f(x) = 0 and f(x′) = 1. Suppose otherwise. Let t ∈ [k − 1] be the largest integer such
that f(xt) = 0. t exists since f(x1) = 0 and f(xk) = 1. Then we have xt → xt+1, but f(xt) = 0 < 1 = f(xt+1), a
contradiction. This concludes the proof of the proposition.
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Proof of Theorem 4. The theorem is a direct corollary of Theorem 3 and Proposition 2. Observe that HIC ⊆ HIC
0 , and

dVC(HIC) ≤ dVC(HIC
0 ) = dVC(X ,→). Applying Theorem 3, the number of samples required for IC ERM onH is

O

(
dVC(HIC) + log(1/δ)

ε2

)
= O

(
dVC(X ,→) + log(1/δ)

ε2

)
.

This concludes the proof.

Proof of Proposition 3. Fix any f ∈ H, we show f̂ is incentive-compatible. First observe that since→ is transitive,

f̂(x) = 1 ⇐⇒ ∃x′ : x→ x′ and f(x′) = 1 ⇐⇒ ∃x′ : x⇒ x′ and f(x′) = 1.

For any x1, x2 ∈ X where x1 → x2, if f̂(x2) = 1, then there exists x′ such that x2 ⇒ x′ and f(x′) = 1. Then since
x1 → x2, we have x1 ⇒ x′, and as a result, f̂(x1) = 1. This immediately implies the proposition.

Proof of Theorem 5. The theorem is a corollary of Theorem 4 and Proposition 3. By Proposition 3, when→ is transitive,
IA ERM with hypothesisH is equivalent to IC ERM with hypothesis Ĥ. By Theorem 4, the number of samples required for
the latter is

O

(
dVC(X ,→) + log(1/δ)

ε2

)
.

This concludes the proof.

B. Useful Examples

Relation between dVC(H) and dVC(Ĥ). We first give an example where dVC(H) =∞ and dVC(Ĥ) = 1. Consider the
example discussed in the introduction. There, the feature space X = R+, and the reporting structure→ satisfies for any
x1, x2 ∈ R+, x1 → x2 ⇐⇒ x1 ≥ x2. Consider H = 2R+ . Clearly dVC(H) =∞, since any S ⊆ R+ is shattered by H.
On the other hand, for any f ∈ H, f̂ is essentially determined by a threshold θf , where

θf = inf{x | f(x) = 1}.

f̂ is then defined by

f̂(x) =


0, x < θf

1, x > θf

f(x), x = θf .

In other words, Ĥ is the class of threshold classifiers over R+. It is well-known that dVC(Ĥ) = 1.

Now we show that dVC(Ĥ) can be arbitrarily larger than dVC(H). Let X = N, andH = {{i} | i ∈ N}, i.e., the set of all
singletons. It is clear that dVC(H) = 1. Now for any d ∈ N, we construct→ such that dVC(Ĥ) = d.6 Let→ be such that
(1) i→ i for any i ∈ N, and (2) for any i ∈ {d, . . . , d+ 2d − 1}, j → i if the j-th digit in the binary representation of i− d
is 1. Now we argue that Ĥ shatters {0, . . . , d − 1}. In fact, any subset S ⊆ {0, . . . , d − 1} can be viewed as the binary
representation of an integer iS in {0, . . . , 2d− 1}. Consider the classifier fS = {iS + d} ∈ H. Clearly f̂S ∩{0, d− 1} = S,
since precisely the points in S can report iS + d, which is the only point assigned label 1 by fS .

Relation between dVC(H), dVC(HIC), and dVC(X ,→). We give an example where dVC(H) =∞ and dVC(HIC) = 1.
Consider again the introductory example, where X = R+. As we argue above, whenH = 2R+ , Ĥ is all threshold classifiers,
and dVC(Ĥ) = 1. On the other hand, by Proposition 1,HIC ⊆ Ĥ (and in fact when→ is transitive,HIC = H ∩ Ĥ). One
may show that every classifier in Ĥ is incentive-compatible, andHIC = Ĥ. As a result, dVC(HIC) = 1.

One may alternatively bound dVC(HIC) using proposition 2, since the intrinsic VC dimension of→ over X is dVC(X ,→
) = 1. This is almost trivial, since any singleton set is independent, and for any x1 6= x2, either x1 < x2 or x2 < x1, so
{x1, x2} cannot be independent. As a result, dVC(X ,→) = 1.

6Similar constructions could also give dVC(Ĥ) =∞.



Incentive-Aware PAC Learning

Algorithm 1 Algorithm for Free IC ERM
Input: A reporting structure→ over feature space X , a sample set S = {(xi, yi)}i ∼ Dm of size m.
Output: An incentive-compatible classifier f minimizing the empirical loss `S(f) on S.

Let G = (V,E) be a capacitated directed graph, where V = {xi}i∈[m] ∪ {s, t} and E = ∅.
for 1 ≤ i < j ≤ m do

if xi → xj then
Let E ← E ∪ {(xj , xi,∞)}, i.e., add an edge from xj to xi with capacity∞.

end if
end for
for i ∈ [m] do

if yi = 0 then
Let E ← E ∪ {(xi, t, 1)}, i.e., add an edge from xi to t with capacity 1.

else
Let E ← E ∪ {(s, xi, 1)}, i.e., add an edge from s to xi with capacity 1.

end if
end for
Compute an s-t mincut (C,C) on G, where C is the set of vertices on the s side of the cut.
Let f be such that for any x ∈ X , f(x) = 1 iff there exists x′ ∈ C \ {s} where x⇒ x′; return f .

C. Algorithm for Free IC ERM
In this section we present an efficient algorithm, Algorithm 1, for free IC ERM.

We show below that Algorithm 1 does compute an empirical risk minimizer among all incentive-compatible classifiers.
Theorem 6. Algorithm 1 finds a classifier f which satisfies

f ∈ argminf ′∈Hi
0c
`S(f ′).

Proof. First observe that given an incentive-compatible classifier f |S restricted to {xi}i, one can always extend the classifier
by assigning label 1 to x ∈ X iff there exists x′ ∈ {xi}i where f |S(x′) = 1 and x⇒ x′. Such an extension assigns label
one only if incentive-compatibility is violated otherwise.

Given the above observation, we only need to show that f minimizes the empirical loss among incentive-compatible
classifiers restricted to the sample set S. We argue that each incentive-compatible classifier f ′ : {xi}i → {0, 1} corresponds
bijjectively to a finite capacity s-t cut in the graph G constructed in Algorithm 1. Recall that a classifier f ′ is incentive-
compatible (restricted to {xi}i) iff for any i, j ∈ [m],

xi → xj =⇒ f(xi) ≥ f(xj).

Consider the cut (C ′, C ′) corresponding to f ′ defined such that xi ∈ C ′ ⇐⇒ f ′(xi) = 1. Per the construction in
Algorithm 1, xi → xj iff there is an edge from xj to xi with infinite capacity, and f ′(xi) < f ′(xj) iff xi /∈ C ′ and xj ∈ C ′.
The condition for f ′ being incentive-compatible is therefore equivalent to: no infinite capacity edge is cut by C ′. In other
words, C ′ has finite capacity.

Now since f found by the algorithm corresponds to a min-cut, it has to be incentive-compatible. We show below that f also
minimizes the empirical loss on S. We rewrite the empirical loss of f ′ in the following way.

`S(f ′) =
1

m

∑
i∈[m]

|f ′(xi)− yi|

=
1

m

∑
i∈[m]:yi=0

f ′(xi) +
1

m

∑
i∈[m]:yi=1

(1− f ′(xi))

=
1

m

 ∑
i∈[m]:yi=0

I[xi ∈ C ′] +
∑

i∈[m]:yi=1

I[xi /∈ C ′]

 .
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Observe that the last line multiplied by m is exactly the capacity of C ′, since for each i where yi = 0, xi ∈ C ′ iff the edge
from s to xi with capacity 1 is cut, and for each i where yi = 1, xi /∈ C ′ iff the edge from xi to t with capacity 1 is cut.
Therefore, minimizing the capacity of the cut is equivalent to minimizing the empirical loss of f ′ on S. We conclude that f
found by Algorithm 1 is in fact an incentive-compatible classifier with minimum empirical loss on S.


