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Abstract
Assistance games (also known as cooperative
inverse reinforcement learning games) have
been proposed as a model for beneficial AI,
wherein a robotic agent must act on behalf
of a human principal but is initially uncertain
about the human’s payoff function. This pa-
per studies multi-principal assistance games,
which cover the more general case in which
the robot acts on behalf of N humans who
may have widely differing payoffs. Impossibil-
ity theorems in social choice theory and vot-
ing theory can be applied to such games, sug-
gesting that strategic behavior by the human
principals may complicate the robot’s task in
learning their payoffs. We analyze in particu-
lar a “bandit apprentice” game in which the
humans act first to demonstrate their indi-
vidual preferences for the arms and then the
robot acts to maximize the sum of human
payoffs. We explore the extent to which the
cost of choosing suboptimal arms reduces the
incentive to mislead—a form of natural mech-
anism design. In this context we propose a
social choice method that uses shared control
of a system to combine preference inference
with social welfare optimization.

1. Introduction
The growing presence of AI systems that collaborate
and coexist with humans in society highlights the
emerging need to ensure that the actions of AI systems
benefit society as a whole. This question is formalized
as the value alignment problem in the AI safety litera-
ture (Amodei et al., 2016), which emphasizes the need
to align the increasingly powerful and autonomous sys-
tems with those of their human principal(s). How-
ever, humans are prone to misspecify their objectives
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which can lead to unexpected behaviors (Amodei et al.,
2016); hence research in value alignment has focused
on deriving preferences from human actions. In the
body of research in value alignment and human robot
interaction, the majority of the work involves scenarios
with one human and one AI system. It is an appeal-
ing setting because the robot and the human share the
same goal. Therefore, methods in this setting such as
inverse reinforcement learning (Ng et al., 2000; Abbeel
& Ng, 2004; Ramachandran & Amir, 2007), inverse re-
ward design (Hadfield-Menell et al., 2017), and LILA
(Woodward et al., 2019) revolve around how an AI
system can optimally learn the preferences of the hu-
man and apply these results to novel environments.
Similarly, the human’s incentive is to optimally teach
the robot its own preferences. The combination of a
learning AI system and a teaching human yields the
assistance game (also known as the cooperative inverse
reinforcement learning game) (Hadfield-Menell et al.,
2016).

However, AI systems in the real world do not fit this
one human, one AI paradigm. Recommendation sys-
tems, autonomous vehicles, and parole algorithms do
not exist in a vacuum—they often influence and are
influenced by multiple humans. Hence, we consider a
variation on assistance games where a robot acts on
behalf of multiple humans, which we call the multi-
principal assistance game (MPAG). The key difference
between this and the scenario with only one human is
that, in general, different humans have different pref-
erences, so it is impossible to align the AI to perfectly
match the preferences of everyone. The problem of ag-
gregating individual preferences for making collective
decisions has been studied by economists and philoso-
phers for more than two hundred years and constitutes
the heart of social choice theory (Sen, 1986).

Even with a given aggregation method, however, the
inference process itself is challenged by the presence
of selfish agents. While the robot acts to optimize
the aggregate of utilities, each human acts to optimize
their own utility. Therefore, unlike the single-principal
assistance game, the multi-principal assistance game is
no longer fully cooperative. This creates a problem for
existing value alignment algorithms. These algorithms
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Multi-Principal Assistance Games

work under the assumption that the demonstrations
and information provided are truly representative of
the human’s preferences. However, the misalignment
between the AI system and each human’s preferences
yields a perverse incentive for the humans: can they
misrepresent their preferences to gain a more desirable
outcome?

We begin with a subclass of MPAGs that generalizes
apprenticeship learning. In multi-principal apprentice-
ship learning, the robot observes trajectories from mul-
tiple humans and then produces a trajectory that max-
imizes a social aggregate of the inferred rewards. We
state an impossibility result for this setting based on
Gibbard’s theorem in social choice theory. Our experi-
ments confirm that human demonstrations may indeed
“misrepresent” their preferences, given a robot that
runs maximum entropy inverse reinforcement learning.

We contrast the impossibility result by introducing an-
other subclass of MPAGs based on the multi-armed
bandit setting. In the multi-principal bandit apprentice
setting, the robot is teleoperated by multiple humans.
We show under this setting that because demonstra-
tions yield an immediate reward, learning from demon-
strations can decrease the incentive to misrepresent
one’s preferences by incurring a cost of lying. By draw-
ing an analogy between our setting and voting theory,
we bring a new perspective on the impossibility results
by showing that voting by demonstrating reduces the
proportion of manipulable profiles. In this setting, the
robot can choose which human to give control to and
whether to perform an action or not. We use this ac-
tive learning as a basis to construct an approximately
efficient mechanism where humans are incentivized to
share the full spectrum of their preferences.

1.1. Related Work

Value Alignment. The need for AI systems to align
with the preferences of humans is well documented in
AI safety literature (Amodei et al., 2016). A first line
of work formulates goal inference as an inverse plan-
ning problem (Baker et al., 2007). For example, In-
verse Reinforcement Learning computes a reward such
that the observed trajectory is optimal in the underly-
ing Markov Decision Process (MDP) (Ng et al., 2000)
(Ziebart et al., 2008). A common assumption of inverse
planning methods is that the robot does not influence
the decision-making of the human. However, previous
work has shown that the presence of a robot has a
significant influence on humans (Robins et al., 2004)
(Kanda et al., 2004). Furthermore, it has been shown
that the robot can benefit from interacting with the hu-
man to infer the goal. For example, Hadfield-Menell et

al. have shown that if we formulate goal inference as a
game between the human and the robot, observing the
optimal trajectory of the human is in general a sub-
optimal strategy (Hadfield-Menell et al., 2016). On
the contrary, previous work has experimentally shown
the emergence of active learning and teaching when
optimizing for a joint policy in the value alignment
problem (Woodward et al., 2019). Therefore, mod-
elling collaboration as a game, where both human and
robot are aware of their mutual influence, is arguably
the most promising approach for efficient human-robot
interaction (HRI) (Dragan, 2017).

Mechanism Design. An important result in social
choice theory and mechanism design is the Gibbard–
Satterthwaite theorem, which states that, for univer-
sal domain of utility functions, every non-trivial game
form is subject to strategic or dishonest actions from
the players (Gibbard, 1973), which can be extended
to non-deterministic mechanisms as well (Gibbard,
1978). This impossibility theorem applies the most
general case of multi-principal assistance games as
well. Approaches in mechanism design seek to create
games where players each acting rationally yield the
desired outcome. In a pseudo-linear environment, the
VCG mechanism and the expected externality mecha-
nism achieve different forms of incentive-compatibility,
meaning players are incentived to act truthfully (Börg-
ers, 2015). These mechanisms do so by impose trans-
fers, so the externalities of a player’s strategic behavior
are borne by that player.

Voting Theory. Similarly, voting theory, a branch
of social choice theory, has also focused on building sys-
tems robust to human manipulation. Recently much
attention has been given to incorporating ideas of
Voting Theory in the design of multiagent systems
(Ephrati & Rosenschein, 1996). Our work formalize
voting theory in a hybrid human-robot setting: hu-
mans “vote” via their demonstrations, and the robot’s
resulting actions represent the resulting “collective de-
cision.” In particular, our setup is similar to ordinal
voting, since the robot does not access to a cardinal
utility function (Boutilier et al., 2015); as a result, the
collective decision may not be socially optimal (Pro-
caccia & Rosenschein, 2006).

Human-Robot Team Robot evolving in a multi-
human environment has already been studied by works
on human-robot team in the HRI literature. Much
work has focused on trust building and resource allo-
cation (Claure et al., 2019). A common assumption is
that the robot and the humans have a common payoff
known to the robot. Our work generalize this setting
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Multi-Principal Assistance Games

to general-sum payoffs possibly unknown to the robot.

2. Impossibility Result for Learning
from Multiple Humans

2.1. Multi-Principal Apprenticeship Learning

We formalize the problem of learning from multi-
ple humans as multi-principal apprenticeship learn-
ing (MPAL), a specific multi-principal assistance game
that elucidates the process of learning from human
demonstrations. A MPAL consists of a multi-agent
world model, a Markov decision process without a re-
ward function, 𝑀\𝑅 = ⟨𝑆, 𝐴, 𝑃 , 𝜇0, 𝑇 ⟩ (Abbeel & Ng,
2004) with 𝑁 humans and one robot where:

• 𝑆 is the set of states.

• 𝐴 is the set of actions.

• 𝑃 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] is the transition function.

• 𝜇0 is the initial state distribution

• 𝑇 is the horizon

Each human ℎ has a private reward function 𝑅∗
ℎ ∶

𝑆 → ℝ that is unknown to the robot. We use a so-
cial welfare function 𝑊 to aggregate these individual
preferences into a single objective 𝑅∗ = 𝑊(𝑅∗

1, … , 𝑅∗
𝑁).

The robot’s objective is to maximize 𝑅∗ in the world
model defined above, despite initial uncertainty about
the individual rewards 𝑅∗

𝑖 . Social welfare functions
are a heavily studied field, examples include the util-
itarian criterion 𝑊𝑈(𝑅∗

1, ..., 𝑅∗
𝑁) = ∑ℎ 𝑅∗

ℎ (Liu et al.,
2015) and the egalitarian criterion 𝑊𝐸(𝑅∗

1, ..., 𝑅∗
𝑁) =

minℎ 𝑅∗
ℎ (Zhang & Shah, 2014; Nace & Pióro, 2008).

The robot doesn’t have direct access to the human re-
ward functions. Instead each human ℎ provides a col-
lection of 𝑝ℎ trajectories through the state space 𝜉ℎ =
(𝜉𝑖

1, ..., 𝜉𝑖
𝑝𝑖

) ∈ Ξ𝑝ℎ , where Ξ = (𝑆 × 𝐴)𝑇 −1 × 𝑆. Each
trajectory is drawn from ℎ’s policy, 𝜓ℎ ∈ △Π, where
Π denote the set of deterministic policies in this MDP.
Therefore, our overall objective is to build a mecha-
nism ℳ ∶ (Ξ)∑ 𝑝ℎ → △Π such that ℳ(𝜉1, ..., 𝜉𝑁) is
optimal in 𝑀∗.
Example 1 (MPAL via IRL). One such mechanism
leverages inverse reinforcement learning (Abbeel & Ng,
2004). This method estimates each reward separately
and optimizes the robot’s policy for the estimated ag-
gregation of rewards. Formally:

• 𝐼𝑅𝐿 ∶ 𝒫(Ξ) → ℝ𝑆 defined on the set of subsets of
Ξ

• 𝑅𝐿 ∶ ℝ𝑆 → Π returns an optimal policy

• ℳ(𝜉1, ..., 𝜉𝑁) = 𝑅𝐿 ∘ 𝑊(𝐼𝑅𝐿(𝜉1), ..., 𝐼𝑅𝐿(𝜉𝑁))

Note that this formalism also accounts for 𝐼𝑅𝐿 meth-
ods that return a distribution over rewards because
we can always marginalize over the uncertainty in the
reward function (Ramachandran & Amir, 2007):
Theorem 1. If 𝐼𝑅𝐿 returns a distribution over re-
ward, then the mechanism defined by ℳ(𝜉1, ..., 𝜉𝑁) =
𝑅𝐿 ∘ 𝔼[𝑊(𝐼𝑅𝐿(𝜉1), ..., 𝐼𝑅𝐿(𝜉𝑁))] maximizes the ex-
pected value function over the induced distribution of
MDPs.
Example 2 (Voting). If the world model is stateless
and the reward functions are defined on the action
space, then MPAL is a voting system where humans
get immediate reward by voting.

2.2. Manipulability of Multi-Principal
Apprenticeship Learning

We assume in this section that the mechanism ℳ is de-
fined directly on the space of strategies of the humans
(△Π)𝑁 .

The humans receive a reward when performing a
demonstration (learning phase (Hadfield-Menell et al.,
2016)) and a reward when the robot acts in the MDP
(deployement phase). Therefore, the total expected
utility for ℎ is the combination of the two phases:

𝑈ℎ(𝜓ℎ, 𝜓−ℎ, 𝑝𝑖, ℳ) =𝑝𝑖𝔼𝜋ℎ∼𝜓ℎ
(𝑉 𝜋ℎ(𝑅∗

ℎ))+
𝔼𝜋𝑟∼ℳ(𝜓)(𝑉 𝜋𝑟(𝑅∗

ℎ)) (1)

where 𝑉 𝜋(𝑅) is the value of the policy 𝜋 in the MDP
induced by 𝑅.

More generally, we introduce a coefficient 𝛼 that quan-
tify the relative weight that the humans put on the
learning phase:

𝑈ℎ(𝜓ℎ, 𝜓−ℎ, 𝛼𝑖, ℳ) =𝛼𝑖𝔼𝜋ℎ∼𝜓ℎ
(𝑉 𝜋𝑖(𝑅∗

ℎ))+
(1 − 𝛼𝑖)𝔼𝜋𝑟∼ℳ(𝜓)(𝑉 𝜋𝑟(𝑅∗

ℎ))
(2)

In our case, the more demonstrations a human pro-
vides, the more weight they will put on the learning
phase. In other words, 𝛼 increases as the number of
demonstrations increases. In the contrary, 𝛼 decreases
as the number of times the robot acts increases.

The total utility each human gets depends on the strat-
egy of the other players through the robot’s inference.
Therefore, even if the humans act independently in
the learning phase, the shared interest in the robot’s
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Multi-Principal Assistance Games

actions during deployment induces a game between
them.

Ideally we would like to have a mechanism such that
the action of one human is not influenced by the action
of other humans. This would ensure that the mech-
anism is not manipulable and stays aligned with its
initial purpose. Formally:
Definition 1 (Straightforward Mechanism). We say
that (ℳ, 𝛼) is straightforward if every human 𝐻𝑖 has
a dominant strategy in the game induced by ℳ and 𝛼:

∀ℎ ∈ [1, 𝑁], ∃𝜓∗
ℎ∀𝜓−ℎ, ∀𝜓ℎ,𝑈ℎ(𝜓∗

ℎ, 𝜓−ℎ, 𝛼ℎ, ℳ) ≥
𝑈ℎ(𝜓ℎ, 𝜓−ℎ, 𝛼ℎ, ℳ)

(3)

When 𝛼 is small, i.e. the demonstration is rela-
tively insignificant compared to the robot actions, the
Gibbard–Satterthwaite (Gibbard, 1973) can be ap-
plied to show that the only straightforward mechanism
are trivial.
Theorem 2 (Based on Gibbard 1973). For sufficiently
small 𝛼, the only straightforward deterministic mecha-
nisms are as follows:

• Duple mechanisms, where the set of possible tra-
jectories are restricted to two.

• There exists one human that can choose among
the possible trajectories (dictatorship).

Furthermore, we can extend Gibbard’s 1978 theorem
(Gibbard, 1978) for non-deterministic mechanisms.
Theorem 3 (Based on Gibbard 1978). On the domain
of versatile1 policies, any straightforward mechanism
must be a probability mixture of mechanisms of two
kind:

• Duple mechanisms

• Unilateral games, where one human gets to choose
among a certain set of possible lotteries over tra-
jectories.

2.3. Experiment: Attacking Inverse
Reinforcement Learning

The theorems in Section 2.2 apply when 𝛼 is suffi-
ciently small. However, there can still be incentives for
strategic behavior in games where 𝛼 is non-negligible.

1A strategy is versatile if the set of utility profile for
which it is dominant has interior points.

In this section, we consider a mechanism based on Max-
imum Entropy IRL (Ziebart et al., 2008) and introduce
a solver to manipulate it.

More specifically, our mechanism has 3 steps. First, we
aggregates all of the human player’s trajectories into a
single dataset. Second, the mechanism uses Maximum
Entropy IRL (Ziebart et al., 2008) to infer a reward
reward function. Finally, we execute a policy that op-
timizes this reward function. Formally:

ℳ(𝜉1, ..., 𝜉𝑁) = 𝑅𝐿 ∘ 𝑀𝐸𝐼𝑅𝐿(𝜉1, ..., 𝜉𝑁) (4)

Theorem 4. The mechanism presented above is not
straightforward.

To show that, we introduce a quadratic program (QP)
solver that heuristically creates adversarial trajectories
against Maximum Entropy IRL. Similarly to previous
work on single-agent value alignment (Hadfield-Menell
et al., 2016; Ho et al., 2016), the QP solver finds an
approximate best-response trajectory in a three-player
game with one robot and two humans. We suppose
that each human gives a single trajectory to the robot
and the robot aggregates the trajectories to find a sin-
gle reward parameter to train its policy.

The human’s goal is to optimize for immediate reward,
balanced with future reward from the robot’s deploy-
ment. While it is hard to directly optimize the result
of the robot’s inference, the average feature counts in
the trajectory dataset have been used as an effective
proxy(Hadfield-Menell et al., 2016; Ho et al., 2016).
Formally, we capture this by defining a QP that op-
timizes for a combination of immediate reward and
the distance of the final features from a target (see
appendix for the full derivation):

max
𝜌𝑡𝑠,𝑎

∑
𝑠,𝑎,𝑡

𝛾𝑡𝜌𝑡
𝑠,𝑎𝜙(𝑠)𝑇 𝑤

− 𝜆|| ∑
𝑠,𝑎,𝑡

𝜌𝑡
𝑠,𝑎𝜙(𝑠) − (2𝔼[𝜙|𝑤] − 𝜙(𝜉1))||2

s.t ∑
𝑎

𝜌𝑡+1
𝑠,𝑎 = ∑

𝑠′,𝑎
𝑃(𝑠′, 𝑎, 𝑠)𝜌𝑡

𝑠′,𝑎

∀𝑠, ∀𝑡 ∈ [0, 𝑇 − 1]
∑

𝑎
𝜌0

𝑠,𝑎 = 𝜇0[𝑠] ∀𝑠

(5)

where 𝜌 is the occupancy measure, 𝜙 is the feature
space embedding, 𝑃 is the transition matrix, 𝑇 is the
horizon, 𝜇0 is the initial state distribution, 𝜆 weights
the relative importance of the outcome of the robot’s
policy, 𝜔 is the reward parameter, 𝔼[𝜙|𝑤] is the ex-
pected feature count of a policy optimal for the MDP
induced by 𝜔 and 𝜉1 is the trajectory of the first hu-
man.
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This is a regularized dual of the linear program formu-
lation for finite-horizon discounted Markov Decision
Process (Puterman, 2014). The best-response trajec-
tory can be directly derived from the occupancy mea-
sure.

The experimental results in a 2D gridworld environ-
ment are presented in Figure 1. The environment is
characterized by a three-dimensional feature space and
an horizon of 40. The reward parameter of the second
human is fixed and equal to 𝜔2 = (0.9, 1, 0). We com-
pute their best-response trajectories to two different
humans, one with reward parameter 𝜔1 = (1, 0, 0) and
another with reward parameter 𝜔1 = (0, 0, 1). In the
former case, the total utility is maximized by playing
the optimal trajectory but in the latter case, the best-
response found by our QP solver is not the optimal
trajectory. Figure 1 presents the optimal trajectory
versus approximate best response in the latter case.

Figure 1: Manipulating a Multi-Agent Alignment IRL
Method using a QP in a 2D 5 × 6 Gridworld Environ-
ment with a 3D feature space. First row: True reward
of humans 1 and 2; State visitation count of optimal
(resp. best-response) trajectories of human 2 (the ini-
tial state is in the bottom left-hand corner). Second
row: Recovered rewards using IRL on the aggregate
of first human’s optimal and second human’s optimal
(resp. best-response) trajectories; Optimal robot tra-
jectories in the MDP induced by these rewards.

3. Mechanism Design for Multi-Agent
Alignment

We now propose a social choice method that uses
shared control of a system to combine preference infer-
ence with social welfare optimization. In this context,
we demonstrate the possibility of non-trivial straight-
forward and approximately efficient mechanisms.

3.1. Multi-Principal Bandit Apprentice
(MPBA)

Imagine a teloperation setting with multiple human
principals. The robot wants to implement a policy

that will have an impact on several humans. To choose
a policy optimized for this specific group of human it
needs to learn about each individual’s preferences by
letting them operate simultaneously or successively. If
it let them operate only a few times, it might not get
enough information about their preferences and end
up with a suboptimal policy in term of social wel-
fare. In the contrary, as long as it is operated by
humans, the robot’s policy is not optimized for the
social welfare but rather each individual’s preferences.
We model this exploration-exploitation problem with a
multi-armed bandit setting adapted to our multi-agent
alignment problem.

In the classical setting of the multi-armed bandit, a
single player receives an arm-dependent stochastic re-
ward each time they pull an arm. Their goal is to find
a policy mapping history of actions and rewards to ac-
tions that minimizes the regret by finding the good
trade-off between exploration and exploitation.

We deviate from the classical setting in several re-
spects. First, 𝑁 > 1 humans are pulling arms and the
rewards on each arm are deterministic, specific to each
human, and known to each human 𝑅∗

ℎ ∶ [1, 𝑀] → [0, 1].
The humans are not exploring; they are communicat-
ing information to the robot. Second, the robot can
decide to pull an arm itself or it can choose one hu-
man to pull an arm in the next round. Third, when
a human pulls an arm, the robot observes only that
fact and does not observe the reward received. We
assume that each person’s total utility is the same:
∀ℎ, ∑𝑎 𝑅∗

ℎ(𝑎) = 1.

As in the previous part, we suppose that the designers
of the system would like to maximize a social welfare
function that aggregates utility. Formally, we define
the social welfare of arm 𝑎 as 𝑤𝑎 = 1

𝑁 ∑𝑁
ℎ=1 𝑅∗

ℎ(𝑎) and
𝑤∗ = max𝑎 𝑤𝑎. For 𝑡 ∈ [1, 𝑇 ], the random variables 𝐻𝑡,
𝐴𝑡, and 𝑊𝑡 represent respectively the human chosen,
the action chosen and the social welfare obtained at
time 𝑡. Since the robot can choose itself, the codomain
of 𝐻𝑡 is [1,N+1]. We also denote by 𝐻̃𝑡 the restriction
of 𝐻𝑡 to [1,N]: 𝑝( ̃𝐻𝑡) = 𝑝(𝐻𝑡|𝐻𝑡 ≤ 𝑁) The objective of
the robot is to minimize cumulative regret with respect
to social welfare:

min 𝑅𝑇 = 𝔼
𝑇

∑
𝑡=1

𝑊 ∗ − 𝑊𝑡 (6)

3.2. Hardness of MPBA

To begin with we consider the non-strategic setting.
We suppose that the humans implement a stationary
policy to approximately optimize immediate reward:

𝑝(𝐴𝑡| ̃𝐻𝑡) ∝ 𝑒𝛽𝑅∗
̃𝐻𝑡
(𝐴𝑡) (7)
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where 𝛽 is a parameter describing how close are hu-
mans from making optimal decisions.

A setting similar to ours has been studied to formalize
assistance to a single human (Chan et al., 2019). In
their setting, at each round the single human suggests
an arm to pull and the robot pulls an arm based on the
arms suggested so far. They show that if the human is
noisily optimal—the probability of suggesting the best
arm is strictly greater than the probability of suggest-
ing a suboptimal arm—then simply pulling the most
commonly suggested arm achieves finite expected re-
gret, contrasting with the lower bound in Ω(log 𝑇 ) for
the classical setting.

The following theorems show that the multi-agent set-
ting is harder than its single-agent counterpart.
Theorem 5. In a bandit assistance game with a single
human, any utility profile leads to zero regret when
𝛽 → ∞ and the robot uses an explore-then-commit
strategy.
Theorem 6. In a bandit assistance game with multiple
humans, there is a utility profile such that the regret is
in Ω(𝑇 ) when 𝛽 → ∞ and the robot uses an explore-
then-commit strategy.

Intuitively, inferring the best arm is not sufficient to
maximize the social welfare when there are multiple
humans.

3.3. Incentive-Compatibility of Voting by
Demonstrating

We now consider the strategic setting. Each human
ℎ acts following a policy 𝜓ℎ ∶ ([1, 𝑀] × [1, 𝑁])∗ →
△[1, 𝑀] mapping history of human-action pairs to ac-
tion and aims to maximize its utility 𝔼(∑𝑡 𝑟∗

ℎ(𝐴𝑡)).
MPBA can be seen as a voting system where instead
of announcing their type, the humans demonstrate it.
The next theorems show that our setting is more ro-
bust to manipulation than classical voting systems.

Formally, define the truthfulness 𝛾ℎ of a human strat-
egy 𝜓ℎ as the frequency of choosing among the best
arms:

𝛾ℎ = ∑𝑇
1 I(𝐻𝑡 = ℎ)I(𝐴𝑡 ∈ arg max𝑎 𝑅∗

ℎ(𝑎))
∑𝑇

1 I(𝐻𝑡 = ℎ)
(8)

We say that 𝜓ℎ is truthful if 𝛾ℎ = 1.

We assume that the robot uses an explore-then-commit
strategy with an exploration time of 𝑁 ⋅ 𝑇 and an ex-
ploitation time of 1. The next theorem states that
increasing the exploration time decreases the number
of non-dominated untruthful strategies. We denote by

△∗
ℎ the minimal suboptimal gap of ℎ and we assume

that every humans has at least one suboptimal arm.
Theorem 7. Given 𝛾 ∈]0, 1[, if 𝑇 > 𝑅∗

ℎ
(1−𝛾)△∗

ℎ
then any

strategy 𝜓ℎ such that 𝛾ℎ < 𝛾 is strictly dominated by
a truthful strategy.
Example 3 (Plurality Voting with Shared Con-
trol). The robot chooses the arm to pull follow-
ing: 𝑎𝑅 = arg max𝑎 ∑𝑁

𝑖=1 1( ̃𝑎𝑖 = 𝑎) where ̃𝑎𝑖 =
arg max𝑎 ∑𝑇

𝑡=1 1(𝑎𝑖
𝑡 = 𝑎).

By using Theorem 4, we can characterize the incentive-
compatibility of this mechanism.
Corollary 1. For any domain of utilities 𝒟𝜖,𝐶 = {𝑢 ∈
ℝ𝑀 ∶ 𝑢∗ < 𝐶 ∧ (𝑢∗ = 𝑢∗∗ ∨ 𝑢∗ − 𝑢∗∗ > 𝜖)}, where
𝑢∗ = max𝑎 𝑢(𝑎) and 𝑢∗∗ = max𝑎{𝑢(𝑎) ∶ 𝑢(𝑎) ≠ 𝑢∗}, if
𝑇 > 2𝐶

𝜖 , then the plurality voting with shared control is
non-dictatorial, does not limit the possible outcomes to
two alternatives and it is dominant-strategy incentive-
compatible on 𝒟𝜖,𝒞. In the limit 𝑇 → ∞ we have
an incentive-compatible mechanism on the universal
domain.

When the exploration time is equal to the exploitation
time, voting by demonstrating is subject to manipula-
tion. We can nevertheless quantify the robustness of
such a system by comparing its proportion of manipu-
lable profiles to the one of classical systems. Formally,
let’s define a manipulable profile:
Definition 2 (Manipulable profile). We say that a
profile 𝑟∗

ℎ is manipulable in the game induced by ℳ if
there is 𝜓−ℎ and 𝜓ℎ such that 𝛾ℎ < 1 and for any truth-
ful strategy 𝜓∗

ℎ, 𝑈ℎ(𝜓∗
ℎ, 𝜓−ℎ, ℳ) < 𝑈ℎ(𝜓ℎ, 𝜓−ℎ, ℳ).

Using a geometric argument on the 2-simplex we can
prove the following:
Theorem 8. In a system using plurality voting with
random tiebreak with 3 voters and 3 alternatives, the
set of manipulable profile by demonstrating is included
in the set of manipulable profile by announcing. Fur-
thermore, the proportion of manipulable profile by an-
nouncing but not by demonstrating is 1

9 .

3.4. Efficient MPBA

In the previous section we have seen that vot-
ing by demonstrating provides a naturally incentive-
compatible mechanism. Yet our first aim is to maxi-
mize the social welfare, therefore we want to build an
approximately efficient mechanism. As we have seen,
it is hard to optimize social welfare because observa-
tions of optimal human behavior provides limited in-
formation the corresponding utility functions. An al-
ternative is to build a mechanism that incentivizes the
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humans to provide information about their entire util-
ity function, not just their optimal arm. By analogy
with the voting theory literature, we define the distor-
tion for a given robot strategy ℳ as the ratio between
the optimal social welfare and the social welfare ob-
tained by the robot in the worst case.

△(ℳ) = max
𝑅∗

max𝑎 ∑ℎ 𝑅∗
ℎ(𝑎)

𝔼(∑ℎ(𝑅∗
ℎ(𝑎ℳ

𝑅 (𝜓∗(𝑅∗, ℳ)))) (9)

where 𝜓∗(𝑅∗, ℳ) is the best response to ℳ for the
profile 𝑅∗.

By building on recent results in ordinal voting theory
(Boutilier et al., 2015) we can construct an approxi-
mately efficient mechanism ℳ. In broad outline, the
robot chooses a human and execute the action only if
the human did not choose this action before. Periodi-
cally, the robot choose a random action with probabil-
ity 1

2 1
𝑀

. We present the full algorithm in the appendix
and show that this algorithm incentivizes the humans
to share their true ordinal preferences. We derive the
following upper-bound for the distortion:
Theorem 9. △(ℳ) = 𝑂(√𝑀 log 𝑀)

4. Conclusion and Future Work
In this paper, we explore an area of concern in the
study of AI alignment—ensuring that AI systems are
designed so that humans agents are incentivized to in-
teract with AI systems in a “honest” way. Applying
the Gibbard–Satterthwaite theorem to this scenario
indicate that demonstrations with little to no signif-
icance are subject to strategic behavior. Experimental
results show that a commonly used inverse reinforce-
ment learning paradigm, which works well in single-
human alignment instances, is prone to manipulative
behavior. However, on a modified setting, we find ef-
fective mechanisms can arise from learning human pref-
erences via their actions if those actions are sufficiently
consequential.

The overall problem of preventing manipulative behav-
ior in multi-human AI systems is open and presents
many opportunities for further work. Our methods
are applied to fairly simple problems: there exists a
need to generalize these results to more general theo-
retical settings and more complicated situations in the
real world.
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