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Abstract

Machine learning is a powerful tool for predicting
human-related outcomes, from credit scores to
heart attack risks. But when deployed, learned
models also affect how users act in order to im-
prove outcomes, whether predicted or real. The
standard approach to learning is agnostic to in-
duced user actions and provides no guarantees as
to the effect of actions. We provide a framework
for learning predictors that are both accurate and
promote good actions. For this, we introduce look-
ahead regularization which, by anticipating user
actions, encourages predictive models to also in-
duce actions that improve outcomes. This regular-
ization carefully tailors the uncertainty estimates
governing confidence in this improvement to the
distribution of model-induced actions. We report
the results of experiments on real and synthetic
data that show the effectiveness of this approach.

1. Introduction
Machine learning is increasingly being used in domains that
have considerable impact on people, ranging from health-
care (Callahan and Shah, 2017) to banking (Siddiqi, 2012)
to manufacturing (Wuest et al., 2016). Moreover, in many
of these domains, the desire for transparency has led to
published machine-learned models that play a dual role in
prediction and influencing behavior change. Consider a
doctor who uses a risk tool to predict whether a patient
is in danger of having a heart attack, while at the same
time wanting to recommend lifestyle changes to improve
outcomes.1

It is well understood that correlation and causation need not
go hand-in-hand (Pearl et al., 2009; Rubin, 2005). What
is novel about this work is that we seek models that serve

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1MDCalc.com is one example of a site that provides risk as-
sessment calculators for use by medical professionals

the dual purpose of achieving predictive accuracy as well as
providing high confidence that decisions made with respect
to the model improve outcomes. That is, we care about
the utility that comes from having a predictive tool, while
recognizing that these tools may also drive decisions. To il-
lustrate the potential pitfalls of a purely predictive approach,
consider a doctor who would like to advise a patient on
how to reduce risk of heart attack. If the doctor assesses
risk using a linear predictive model (as is often the case,
see (Ustun and Rudin, 2016)), then a negative coefficient
for alcohol consumption may lead the doctor to suggest a
daily glass of red wine. Is this decision justified? Perhaps
not, although this recommendation has often been made
based on correlative evidence and despite a clear lack of
experimental support (Haseeb et al., 2017; Sahebkar et al.,
2015).

At the same time, predictive models are valuable in and of
themselves, for example in assessing whether a patient is in
immediate risk. Similarly, banks want to understand credit
risk while promoting good decisions by consumers in regard
to true creditworthiness, and wine producers want to predict
the marketability of a new vintage while improving their pro-
cesses for next year. As designers of a learning framework,
what degrees of freedom can we utilize to promote good
decisions? Our main insight is that controlling the trade-
off between accuracy and decision quality, where it exists,
can be cast as a problem of model selection. For instance,
there may be multiple models with similar predictive perfor-
mance but with different coefficients that therefore induce
very different decisions (Breiman et al., 2001). To achieve
this tradeoff we introduce lookahead regularization, which
balances accuracy and the improvement associated with in-
duced decisions. Lookahead regularization anticipates how
users will act and penalizes a model unless there is high
confidence that these decisions will improve outcomes.

Formally, these decisions, which depend on the predictive
model, induce a target distribution p′ on covariates that
may differ from an initial distribution p. For an individual
with covariates x, they are mapped to new covariates x′.
For a prespecified confidence level τ , we want to guaran-
tee improvement for at least a τ -fraction of the population,
comparing outcomes under p′ in relation to observed out-
comes in p (under an invariance assumption on p(y|x)). The
technical challenge is that p′ may differ considerably from
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p, resulting in uncertainty in estimating the effect of deci-
sions. To solve this, lookahead regularization makes use
of an uncertainty model that provides confidence intervals
around decision outcomes. A discriminative uncertainty
model is trained under a learning framework that makes use
of importance weighting (Gretton et al., 2009; Shimodaira,
2000; Sugiyama et al., 2008) to handle covariate shift and is
designed to provide accurate intervals for p′.

Our algorithm has stages that alternate between optimizing
the different components of our framework: the predictive
model (under the lookahead regularization term), the uncer-
tainty model (used within the regularization term), and the
propensity model (used for covariate shift adjustment). If the
uncertainty model is differentiable and the predictive model
is twice-differentiable, then gradients can pass through the
entire pipeline and gradient-based optimization can be ap-
plied. We run three experiments. One uses synthetic data
and illustrates how our approach can be useful, as well as
helping to understand what is needed for it to succeed. The
second application is to wine quality prediction and shows
that even simple tasks have interesting tradeoffs between
accuracy and improved decisions that can be utilized. The
third experiment focuses on predicting diabetes progression
and includes a demonstration of the framework in a setting
with individualized actions.

1.1. Related work

Strategic Classification. In the field of strategic classifica-
tion, the learner and agents engage in a Stackelberg game,
where the learner attempts to publish a maximally accurate
classifier taking into account that agents will shift their fea-
tures to obtain better outcomes under the classifier (Hardt
et al., 2016). While early efforts viewed all modifications as
“gaming”— an adversarial effect to be mitigated (Dong et al.,
2018; Brückner and Scheffer, 2011) —a recent trend has
focused on creating incentives for modifications that lead
to better outcomes under the ground truth function rather
than simply better classifications (Kleinberg and Raghavan,
2019; Alon et al.; Haghtalab et al., 2020; Tabibian et al.,
2019). In the absence of a known mapping from effort to
ground truth, Miller et al. (2019) show that incentive design
relates to causal modeling, and several responsive works
explore how the actions induced by classifiers can facili-
tate discovery of these causal relationships (Perdomo et al.,
2020; Bechavod et al., 2020; Shavit et al., 2020). The sec-
ond order effect of strategic classification on algorithmic
fairness has also motivated several works (Liu et al., 2020;
Hu et al., 2019; Milli et al., 2019). Generally, these works
consider the equilibrium effects of classifiers, where the
choice of model affects covariate distributions and in turn
predictive accuracy. In contrast, we consider what can be
done given a snapshot at a point in time, or when the input
distribution remains unaffected by user actions.

Causality, Covariate Shift, and Distributionally Robust
Learning. There are many efforts in ML to quantify the
uncertainty associated with predictions and identify domain
regions where models err (Lakshminarayanan et al., 2017;
Hernández-Lobato and Adams, 2015; Gal and Ghahramani,
2016; Guo et al., 2017; Tagasovska and Lopez-Paz, 2019;
Liu et al., 2019). However, most methods fail to achieve de-
sirable properties when deployed out of distribution (OOD)
(Snoek et al., 2019). When the shifted distribution is un-
known at train time, distributionally robust learning can
provide worst-case guarantees for specific types of shifts
but require unrealistic computational expense or restrictive
assumptions on model classes (Sinha et al., 2017). Although
we do not know ahead of training our shifted distribution of
interest, our framework is concerned only with the single,
specific OOD distribution that is induced by the learned
predictive model. Hence, we need only guarantee robust-
ness to this particular distribution, for which we make use
of tools from learning under covariate shift (Bickel et al.,
2009). Relevant to our task, Mueller et al. (2016) seek to
identify treatments which are beneficial with high proba-
bility under the covariate shift assumption. Because model
variance generally increases when covariate shift acts on
non-causal variables (Peters et al., 2016), our framework of
trading off uncertainty minimization with predictive power
relates to efforts in the causal literature to find models which
have optimal predictive accuracy while being robust to
classes of interventional perturbations (Meinshausen, 2018;
Rothenhäusler et al., 2018).

2. Method
Let x ∈ X = Rd denote a feature vector and y ∈ R denote
a label, where x describes the object of interest (e.g., a
patient, a customer, a wine vintage), and y describes the
quality of an outcome associated with x, where we assume
that higher y is better. We assume an observational dataset
S = {(xi, yi)}mi=1, which consists of IID samples from
a population with joint distribution (x, y) ∼ p(x, y) over
covariates (features) x and outcomes y. We denote by p(x)
the marginal distribution on covariates.

Let f : X → R denote a model trained on S. We assume
that f is used in two different ways:

1. Prediction: To predict outcomes y for objects x, sam-
pled from p(x).

2. Decision: To take action, through changes to x, with
the goal of improving outcomes.

We will assume that user actions map each x to a new x′ ∈
X . We refer to x′ as a user’s decision or action and denote
decision outcomes by y′ ∈ R, We set x′ = d(x) and refer
to d : X → X as the decision function. We will assume
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Figure 1. An illustration of our approach. The data density p(x) is concentrated to the left of the peak, and p(y|x) is deterministic,
y = f∗(x). (A) Users (x) seeking to improve their outcomes (y) often look to predictive models for guidance on how to act, e.g. by
following gradient information (x 7→ x′). (B) But actions may move x′ into regions of high uncertainty where f is unconstrained by
the training data, and models of equally good fit on p can behave very differently on p′. (C) To reason about the uncertainty in decision
outcomes, our approach learns an interval model g(x′) = [`′, u′], decoupled from f and targeted specifically at p′, guaranteeing that
y′ ∈ [`′, u′] with confidence τ . (D) By incorporating into the objective a model of user behavior, lookahead regularization (Eq. (4))
allows for balancing between accuracy and improvement. By penalizing f whenever y > `′, the model learns predictive models that
encourage decisions that are safe, i.e., y′ ≥ y w.p. at least τ .

that users consult f to drive decisions—either because they
care only about predicted outcomes (e.g., the case of bank
loans), or because they consider the model to be a valid
proxy of the effect of a decision on the outcome (e.g., the
case of heart attack risk or wine production). As in other
works incorporating strategic users into learning (Perdomo
et al., 2020; Hardt et al., 2016), our framework requires an
explicit model of how users use the model to make decisions.
For concreteness, we model users as making a step in the
direction of the gradient of f , but note that the framework
can also support any other differential decision model.2

Since not all attributes may be susceptible to change, we
distinguish between mutable and immutable features using
a masking operator Γ : X → {0, 1}d.

Assumption 1 (User decision model). Given masking op-
erator Γ, we define user decisions as:

x′ = x+ ηΓ(∇f (x)), (1)

where the step size η ≥ 0 is a design parameter.

Through Assumption 1, user decisions induce a particular
decision function d(x), and in turn, a target distribution
over X , which we denote p′(x). This leads to a new joint
distribution (x′, y′) ∼ p′(x, y), with decisions inducing new
outcomes. To achieve causal validity in the way we reason
about the effect of decisions on outcomes, we follow Peters
et al. (2016) and assume that y depends only on x and is
invariant to the distribution on x.

Assumption 2 (Covariate shift (Shimodaira, 2000)). The
conditional distribution on outcomes, p(y|x′), is invariant

2Many works consider decisions that take gradient steps under
cost constraints c(x, x′) < B. Note that such constraints can
be incorporated into learning using, for example, differentiable
optimization layers (Agrawal et al., 2019).

for any arbitrary, marginal distribution p′(x) on covariates,
including the data distribution p(x).

Assumption 2 says that whatever the transform d, condi-
tional distribution p(y|x) is fixed, and the new joint distri-
bution is p′(x′, y) = p(y|x′)p′(x′), for any p′ (note that p′

also depends on f ). This covariate-shift assumption ensures
the causal validity of our approach (and entails the property
of no-unobserved confounders). Although a strong assump-
tion, this kind of invariance has been leveraged in other
works that relate to questions of causality (Rojas-Carulla
et al., 2018; Mueller et al., 2016), as well as for domain
adaptation (Schweikert et al., 2009; Quionero-Candela et al.,
2009).

2.1. Learning objective

Our goals in designing a learning framework are twofold.
First, we would like learning to result in a model whose
predictions ŷ = f(x) closely match the corresponding la-
bels y for x ∼ p(x). Second, we would like the model to
induce decisions x′ for counterfactual distribution p′ whose
outcome y′ improves upon the initial y. To balance between
these two goals, we construct a learning objective in which
a predictive loss function is augmented with a regularization
term that promotes good decisions. The difficulty is that
decision outcomes y′ depend on decisions x′ through the
learned model f . Hence, realizations of y′ are unavailable at
train time, as they cannot be observed until after the model
is deployed. For this reason, simple constraints of the form
y′ ≥ y are ill-defined, and to regularize we must reason
about outcome distributions y′ ∼ p(y|x′), for x′ ∼ p′. A
naive approach might consider the average improvement,
with µ′ = Ey′∼p(y|x′)[y

′], for a given x′ ∼ p′, and penalize
the model whenever µ′ < y, for example linearly using
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µ′ − y. Concretely, µ′ must be estimated, and since f mini-
mizes MSE, then ŷ′ = f(x′) is a plausible estimate of µ′,
giving:

min
f∈F

Ep(x,y)[(ŷ − y)2] + λEp(x,y)[ŷ′ − y] (2)

where ŷ′ = f(x′) and λ ≥ 0 determines the relative
importance of improvement over accuracy. There are two
issues with this approach. First, learning can result in an f
that severely overfits in estimating µ, meaning that at train
time the penalty term in the (empirical) objective will appear
to be low whereas at test time its (expected) value will be
high. This can happen, for example, when x′ is moved to a
low-density region of p(x) where f is unconstrained by the
data and, if flexible enough, can artificially (and wrongly)
signal improvement. To address this we use two decoupled
models—one for predicting y on distribution p, and another
for handling y′ on distribution p′.

Second, in many applications it may be unsafe to guaran-
tee that improvement hold only on average per individual
(e.g., heart attack risk, credit scores). To address this, we
encourage f to improve outcomes with a certain degree
of confidence τ , for τ > 0, i.e., such that P[y′ ≥ y] ≥ τ
for a given (x, y) and induced x′ and thus p(y′|x′). Im-
portantly, while one source of uncertainty in y′ is p(y|x′),
other sources of uncertainty exist, including those coming
from insufficient data as well as model uncertainty. Our
formulation is useful when additional sources of uncertainty
are significant, such as when the model f leads to actions
that place x′ in low-density regions of p.

In our method, we replace the average-case penalty in Eq.
(2) with a confidence-based penalty:

min
f∈F

Ep(x,y)[(ŷ − y)2]+λEp(x,y)[1{P[y′ ≥ y] < τ}], (3)

where y′ ∼ p(y|x′) and 1{A} = 1 if A is true, and 0
otherwise. In practice, P[y′ ≥ y] is unknown, and must be
estimated. For this, we make use of an uncertainty model,
gτ : X → R2, gτ ∈ G, which we learn, and maps points
x′ ∈ X to intervals [`′, u′] that cover y′ with probability τ .
We also replace the penalty term in Eq. (3) with the slightly
more conservative 1{`′ < y}, and to make learning feasible
we use the hinge loss max{0, y−`′} as a convex surrogate.3

For a given uncertainty model, gτ , the empirical learning
objective for model f on sample set S is:

min
f∈F

m∑
i=1

(ŷi − yi)2 + λR(gτ ;S). (4)

3The penalty is conservative in that it considers only one-sided
uncertainty, i.e., y′ < ` and u is not used explicitly. Although
open intervals suffice here, most methods for interval prediction
consider closed intervals, and in this way our objective can support
them. For symmetric intervals, τ simply becomes τ/2.

where R(gτ ;S) is the lookahead regularization term given
by:

R(gτ ;S) =

m∑
i=1

max{0, yi − `′i} (5)

By anticipating how users decide, this penalizes models
whose induced decisions do not improve outcomes at a suf-
ficient rate (see Figure 1).The novelty in the regularization
term is that it accounts for uncertainty in assessing improve-
ment, and does so for points x′ that are out of distribution.
If f pushes x′ towards regions of high uncertainty, then
the interval [`′, u′] is likely to be large, and f must make
more “effort” to guarantee improvement, something that
may come at some cost to in-distribution prediction accu-
racy. As a byproduct, while the objective encodes the rate
of decision improvement, we will also see the magnitude of
improvement increase in our experiments.

Note that the regularization term R depends both on f and
g—to determine x′, and to determine `′ given x′, respec-
tively. This justifies the need for the decoupling of f and g:
without this, uncertainty estimates based on f(x′) are prone
to overfit by artificially manipulating intervals to be higher
than y, resulting in low penalization at train time without
actual improvement (see Figure 2 (right)).

2.2. Estimating uncertainty

The usefulness of lookahead regularization relies on the
ability of the uncertainty model g to correctly capture the
various kinds of uncertainties about the outcome value for
the perturbed points. This can be difficult because uncer-
tainty estimates are needed for out-of-distribution points
x′.

Fortunately, for a given f the counterfactual distribution p′

is known (by Assumption 1), and we can use the covariate
transform associated with the decision to construct sample
set S ′ = {x′i}mi=1. Even without labels for S ′, estimating g
is now a problem of learning under covariate shift, where
the test distribution p′ can differ from the training distribu-
tion p. In particular, we are interested in learning uncertainty
intervals that provide good coverage. There are many ap-
proaches to learning under covariate shift. Here we describe
the simple and popular method importance weighting, or
inverse propensity weighting (Shimodaira, 2000). For a loss
function L(g) = L(y, g(x)), we would like to minimize
Ep′(x,y)[L]. Let w(x) = p′(x)/p(x), then by the covariate
shift assumption:

Ep′(x,y)[L(g)] =

∫
L(g) dp′(x) dp(y|x)

=

∫
p′(x)

p(x)
L(g) dp(x) dp(y|x)

= Ep(x,y)[w(x)L(g)].
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Figure 2. Results for the synthetic experiment for lookahead (main plot) and baseline (inlay) models.

Hence, training g with points sampled from distribution p
but weighted by w will result in an uncertainty model that is
optimized for the counterfactual distribution p′. In practice,
w is itself unknown, but many methods exist for learning
an approximate model ŵ(x) ≈ w(x) using sample sets S
and S ′ (e.g. (Kanamori et al., 2009)). To remain within our
discriminative approach, here we follow (Bickel et al., 2009)
and train a logistic regression model h : X → [0, 1], h ∈ H ,
to differentiate between points x̃ ∈ S (labeled ỹ = 0) and
x̃ ∈ S ′ (labeled ỹ = 1) and set weights to ŵ(x) = eh(x). As
we are interested in training g to gain a coverage guarantee,
we define L(y, g(x)) = 1{y /∈ [`, u]}.

2.3. Algorithm

All the elements in our framework— the predictive model f ,
the uncertainty model g, and the propensity model h —are
interdependent. Specifically, optimizing f in Eq. (4) re-
quires intervals from g; learning g requires weights from h;
and h is trained on S ′ which is in turn determined by f . Our
algorithm therefore alternates between optimizing each of
these components while keeping the others fixed. At round
t, f (t) is optimized with intervals [`′i, u

′
i] = g(t−1)(x′i), g(t)

is trained using weights wi = h(t)(xi), and h(t) is trained
using points x′i as determined by f (t). The procedure is ini-
tialized by training f (0) without the lookahead term R. For
training g and h, weights wi = ŵ(xi) and points {x′i}mi=1,
respectively, can be precomputed and plugged into the ob-
jective. Training f with Eq. (4), however, requires access to
the function g, since during optimization, the lower bounds
`′ must be evaluated for points x′ that vary as updates to
f are made. Hence, to optimize f with gradient methods,
we use an uncertainty model g that is differentiable, so that
gradients can pass through them (while keeping their pa-
rameters fixed). Furthermore, since gradients must also
pass through x′ (which includes ∇f ), we require that f be
twice-differentiable.

In the experiments we consider two methods for learning g:

1. Bootstrapping (Efron and Tibshirani, 1994), where a
collection of models {g(i)}ki=1 is trained for prediction
each on a subsampled dataset and combined to produce

a single interval model g, and

2. Quantile regression (Koenker and Hallock, 2001),
where models g(`), g(u) are discriminatively trained
to estimate the τ and 1− τ quantiles, respectively, of
the counterfactual target distribution p′(y|x′).

3. Experiments
In this section, we evaluate our approach in three experi-
ments of increasing complexity and scale, where the first is
synthetic and the latter two use real data. Because the goal
of regularization is to balance accuracy with decision quality,
we will be interested in understanding the attainable fron-
tier of accuracy vs. improvement. For our method, this will
mostly be controlled by varying lookahead regularization pa-
rameter, λ ≥ 0. In all experiments we measure predictive ac-
curacy with root mean squared error (RMSE), and decision
quality in two ways: mean improvement rate E[1{y′i > yi}]
and mean improvement magnitude E[y′i − yi].

To evaluate the approach, we need a means for evaluating
counterfactual outcomes y′ for decisions x′. Therefore, and
similarly to Shavit and Moses (2019), we make use of an
inferred ‘ground-truth’ function f∗ to test decision improve-
ment, assuming y′ = f∗(x′). Model f∗ is trained on the
entirety of the data. By optimizing f∗ for RMSE, we think
of this as estimating the conditional mean of p(y|x), with
the data labels as (arbitrarily) noisy observations. To make
for an interesting experiment, we learn f∗ from a function
class F ∗ that is more expressive than F or G. The sample
set S will contain a small and possibly biased subsample of
the data, which we call the ‘active set’, and that plays the
role of a representative sample from p. This setup allows us
not only to evaluate improvement, but also to experiment
with the effects of different sample sets.

3.1. Experiment 1: Quadratic curves

For a simple setting, we explore the effects of regularized
and unregularized learning on decision quality in a stylized
setting using unidimensional quadratic curves. Let f∗(x) =
−x2, and assume y = f(x) + ε where ε is independently,
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Figure 3. Results for the wine experiment. Tradeoff in accuracy and improvement under full mutability (left) and partial mutability
(center), for which model coefficients are also shown (right).

normally distributed. By varying the decision model step-
size η, we explore three conditions: one where a naı̈ve
approach works well, one where it fails but regularization
helps, and one where regularization also fails.

In Figure 2 (left), η is small, and the x′ points stay within
the high certainty region of p. Here, the baseline works
well, giving both a good fit and effective decisions, and
the regularization term in the lookahead objective remains
inactive. In Figure 2 (center), η is larger. Here, the baseline
model pushes x′ points to a region where y′ values are low.
Meanwhile, the lookahead model, by incorporating into
the objective the decision model and estimating uncertainty
surrounding y′, is able to adjust the model to induce good
decisions with some reduction in accuracy. In Figure 2
(right), η is large. Here, the x′ points are pushed far into
areas of high uncertainty. The success of lookahead relies
on the successful construction of intervals at p′ through the
successful estimation of w, and may fail if p and p′ differ
considerably, as is the case here.

3.2. Experiment 2: Wine quality

The second experiment focuses on wine quality using the
wine dataset from the UCI data repository (Dua and Graff,
2017). The wine in the data set has 13 features, most of
which correlate linearly with quality y, but two of which
(alcohol and malic acid) have a non-linear U-shaped or
inverse-U shaped relationship with y. For the ground truth
model, we set f∗(x) =

∑
i θixi +

∑
i θ
′
ix

2
i (RMSE = 0.2,

y ∈ [0, 3]) so that it captures these nonlinearities, . To better
demonstrate the capabilities of our framework, we sample
points into the active set non-uniformly by thresholding on
the non-linear features. The active set includes ∼30% of
the data, and is further split 75-25 into a train set used for
learning and tuning and a held-out test set used for final
evaluation.

For the predictive model, our focus here is on linear mod-
els. The baseline includes a linear fbase trained with `2
regularization (i.e., Ridge Regression) with regularization

coefficient α ≥ 0. Our lookahead model includes a linear
flook trained with lookahead regularization (Eq. (4)) with
regularization coefficient λ ≥ 0. In some cases we will add
to the objective an additional `2 term, so that for a fixed
α, setting λ = 0 recovers the baseline model. Lookahead
was trained for 10 rounds and the baseline with a matching
number of overall epochs. The uncertainty model g uses
residuals-based bootstrapping with 20 linear sub-models.
The propensity model h is also linear. We consider two
settings: one where all features (i.e., wine attributes) are
mutable and using decision step-size η = 0.5, and another
where only a subset of the features are mutable and using
step-size η = 2.

Full mutability. Figure 3 (left) presents the frontier of
accuracy vs. improvement on the test set when all features
are mutable. The baseline and lookahead models coincide
when α = λ = 0. For the baseline, as α increases, predic-
tive performance (RMSE) displays a typical learning curve
with accuracy improving until reaching an optimum at some
intermediate value of α. Improvement, however, monotoni-
cally decreases with α, and is highest with no regularization
(α = 0). This is because in this setting, gradients of fbase
induce reasonably good decisions: fbase is able to approxi-
mately recover the dominant linear coefficients of f∗, and
shrinkage due to higher `2 penalization reduces the magni-
tude of the (typically positive, on average) change. With
lookahead, increasing λ leads to better decisions, but at the
cost of higher (albeit sublinear) RMSE. The initial improve-
ment rate at λ = 0 is high, but lookahead and `2 penalties
have opposing effects on the model. Here, improvement is
achieved by (and likely requires) increasing the size of the
coefficients of linear model, flook. We see that flook learns
to do this in an efficient way, as compared to a naı̈ve scaling
of the predictively-optimal fbase.

Partial mutability. Figure 3 (center) presents the fron-
tier of accuracy vs. improvement when only a subset of
the features are mutable (note that this effects the scale of
possible improvement). The baseline presents a similar be-
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Figure 4. Results for the diabetes experiment. Tradeoff in accuracy and improvement under linear f with partial mutability (left),
visualization of shift p→ p′ with non-linear f to regions of higher decision quality (center), and regions of lower uncertainty (right).

havior to the fully-mutable setting, but with the optimal
predictive model inducing a negative improvement. Here
we consider lookahead with various degrees of additional
`2 regularization. When α = λ = 0, the models again coin-
cide. However, for larger λ, significant improvement can be
gained with very little or no loss in RMSE, while moderate
λ values improve both decisions and accuracy. This holds
for various values of α, and setting α to the optimal value
of fbase results in lookahead dominating the trade-off curve
for all observed λ. Improvement is reflected in magnitude
and rate, which rises quickly from the baseline’s ∼ 40% to
an optimal 100%, showing how lookahead learns models
that lead to safe decisions.

Figure 3 (right) shows how the coefficients of fbase and
flook change as α and λ increase, respectively (for looka-
head α = 0). As can be seen, lookahead works by making
substantial changes to mutable coefficients, sometimes re-
versing their sign, with milder changes to immutable coef-
ficients. Lookahead achieves improvement by capitalizing
on its freedom to learn a useful direction of improvement
within the mutable subspace, while compensating for the
possible loss in accuracy through mild changes in the im-
mutable subspace.

3.3. Experiment 3: Diabetes

The final experiment focuses on the prediction of diabetes
progression using the diabetes dataset4 (Efron et al., 2004).
The dataset has 10 features describing various patient at-
tributes. We consider two features as mutable: BMI and
T-cell count (marked as ‘s1’). While both display a similar
(although reversed) linear relationship with y, feature s1 is
much noisier. The setup is as in wine but with two differ-
ences: to capture nonlinearities we set f∗ to be a flexible
generalized additive model (GAM) with splines of degree
10 (RMSE = 0.15), and train and test sets are sampled
uniformly from the data. We normalize y to [0, 1] and set
η = 5.

4https://www4.stat.ncsu.edu/˜boos/var.
select/diabetes.html

Figure 4 (left) presents the accuracy-improvement frontier
for linear f and bootstrapped linear g. Results show a simi-
lar trend to the wine experiment, with lookahead providing
improved outcomes (both rate and magnitude) while preserv-
ing predictive accuracy. Here, lookahead improves results
by learning to increase the coefficient of s1, while adjusting
other coefficients to maintain reasonable uncertainty. The
baseline fails to utilize s1 for improvement since from a
predictive perspective there is little value in placing weight
on s1.

When f is linear, decisions are uniform across the popula-
tion in that ∇fθ (x) = θ is independent of x. To explore
individualized actions, we also consider a setting where
f is a more flexible quadratic model (i.e., linear in x and
x2) in which gradients depend on x and uncertainty is esti-
mated using quantile regression. Figure 4 (center) shows the
data as projected onto the subspace (xBMI, xs1), with color
indicating outcome values f∗(x), interpolated within this
subspace. As can be seen, the mapping x 7→ x′ due to flook
generally improves outcomes. The plot reveals that, had we
had knowledge of f∗(x), uniformly decreasing BMI would
also have improved outcomes, and this is in fact the strategy
envoked by the linear fbase. But decisions must be made
based on the sample set, and so uncertainty must be taken
into account. Figure 4 (right) shows a similar plot but with
color indicating uncertainty estimates as measured by the
interval sizes given by g. The plot shows that decisions are
directed towards regions of lower uncertainty (i.e., approxi-
mately following the negative gradients of the uncertainty
slope), showing how lookahead successfully utilizes these
uncertainties to adjust the predictive model flook.

4. Discussion
Given the extensive use of machine learning across an ever-
growing range of applications, we think it is appropriate to
assume, as we have here, that predictive models will remain
in widespread use, and that at the same time, and despite
well-understood concerns, users will continue to act upon
them. In line with this, our goal with this work has been

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
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to develop a machine learning framework that accounts for
decision making by users but remains fully within the dis-
criminative framing of statistical machine learning. The
lookahead regularization framework that we have proposed
augments existing machine learning methodologies with a
component that promotes good human decisions. We have
demonstrated the utility of this approach across three differ-
ent experiments, one on synthetic data, one on predicting
and deciding about wine, and one on predicting and de-
ciding in regard to diabetes progression. We hope that this
work will inspire continued research in the machine learning
community that embraces predictive modeling while also
being cognizant of the ways in which our models are used.

Broader Impact
In our work, the learning objective was designed to align
with and support the possible use of a predictive model to
drive decisions by users. It is our belief that a responsible
and transparent deployment of models with “lookahead-
like” regularization components should avoid the kinds of
mistakes that can be made when predictive methods are
conflated with causally valid methods.

At the same time, we have made a strong simplifying as-
sumption, that of covariate shift, which requires that the
relationship between covariates and outcome variables is
invariant as decisions are made and the feature distribution
changes. This strong assumption is made to ensure validity
for the lookahead regularization, since we need to be able
to perform inference about counterfactual observations. As
discussed by Mueller et al. (2016) and Peters et al. (2016),
there exist real-world tasks that reasonably satisfy this as-
sumption, and yet at the same time, other tasks— notably
those with unobserved confounders —where this assump-
tion would be violated. Moreover, this assumption is not
testable on the observational data. This, along with the need
to make an assumption about the user decision model, means
that an application of the method proposed here should be
done with care and will require some domain knowledge to
understand whether or not the assumptions are plausible.

Furthermore, the validity of the interval estimates requires
that any assumptions for the interval model used are satisfied
and that weights w provide a reasonable estimation of p′/p.
In particular, fitting to p′ which has little to no overlap with
p (see Figure 2) may result in underestimating the possibility
of bad outcomes.

If used carefully and successfully, then the system provides
safety and protects against the misuse of a model. If used
in a domain for which the assumptions fail to hold then the
framework could make things worse, by trading accuracy
for an incorrect view of user decisions and the effect of these
decisions on outcomes.

We would also caution against any specific interpretation
of the application of the model to the wine and diabetes
data sets. We note that model misspecification of f∗ could
result in arbitrarily bad outcomes, and estimating f∗ in any
high-stakes setting requires substantial domain knowledge
and should err on the side of caution. We use the data
sets for purely illustrative purposes because we believe the
results are representative of the kinds of results that are
available when the method is correctly applied to a domain
of interest.
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Appendix

A. Pseudocode
Our algorithm alternates between optimizing the three com-
ponents of the framework: a predictive model, a propensity
model, and an uncertainty model. Here we give pseudocode
for the following per-component objectives:

1. A predictive model ŷ = f(x), optimizing the squared
loss:

Lpred(f ;S) =

m∑
i=1

(yi − ŷi)2

2. A propensity weight model w = eh(x), optimizing the
log-loss:

Lprop(h;S,S ′) =

m∑
i=1

log(1+eh(xi))+log(1+e−h(x
′
i))

3. An uncertainty interval model [`, u] = gτ (x), optimiz-
ing the τ -quantile loss:

L
(τ)
uncert(g;S, w) =

m∑
i=1

w(xi) max{(τ − 1)(yi − `i), τ(yi − `i)}

and the decision function dη(x; f) = x+ η∇f (x), but note
that others can be plugged in. The pseudocode is given
below.

Algorithm 1 Lookahead(S, T, λ, η, τ)

1: f (0) ← argminf∈F Lpred(f ;S)
2: for t = 1, . . . , T do
3: x′i ← dη(xi; f

(t−1)) for all i = 1, . . . ,m
4: S ′ ← {x′i}mi=1

5: h(t) ← argminh∈H Lprop(h;S,S ′)
6: w ← eh

(t)

7: g(t) ← argming∈G L
(τ)
uncert(g;S, w)

8: f (t) ← argminf∈F Lpred(f ;S) + λR(g(t);S)
9: end for

10: return f (T )

B. Uncertainty models
Here we describe the two uncertainty methods used in our
paper and how they apply to our setting.

B.1. Bootstrapping

Bootstrapping produces uncertainty intervals by combining
the outputs of a collection of k models {g(i)}ki=1, each

trained independently for prediction on a random subset of
the data. There are many approaches to bootstrapping, and
here we describe two:

• Vanilla bootstrapping: Each g(i) is trained using a
predictive objective (e.g., squared loss) on a sample
set S(i) = {(x(i)j , y

(i)
j )}mj=1 where (x

(i)
j , y

(i)
j ) are sam-

pled with replacement from S. The sub-models are
then combined using:

g(x) = [µ(x)− zσ(x), µ(x) + zσ(x)]

where:

µ(x) =
1

k

k∑
i=1

g(i)(x),

σ(x) =
1

k

k∑
i=1

(µ(x)− g(i)(x))2

and z is the z-score corresponding to the confidence
parameter τ under a normal distribution.

• Bootstrapping residuals: First, a predictive model
ḡ is fit to the data, and residuals r = y − ḡ(x) are
computed. Then, each g(i) is trained on the original
sample data but with ground truth-labels yi replaced
with random pseudo-labels:

S(i) = {(xj , ȳ(i)j )}mj=1 ȳ
(i)
j = yi + rj

where rj are sampled with replacement from {rj}mj=1.

In our framework, because g must apply to p′, each g(i) is
trained with propensity weights w. To account for cases
where p and p′ differ, the g(i) are trained not on sample
sets of size m, but rather, of size m̃(w), where m̃(w) is the
effective sample size (Kong et al., 1994) given by:

m̃(w) =
mean({wi}mi=1)

var({wi}mi=1)

for wi = w(xi) ∀ i = 1, . . . ,m.

B.2. Quantile regression

Quatile regression is a learning framework for training mod-
els to predict the τ -quantile of the conditional label distribu-
tion p(y|x). Just as training with the squared loss is aimed
at predicting the mean of p(y|x), training with the absolute
loss |y− ŷ| is aimed at the median. Quantile regression gen-
eralizes the absolute loss by considering a ’tilted’ variant
with slopes τ − 1 and τ :

Qτ (y, ŷ) = max{(1− τ)(y − ŷ), τ(y − ŷ)}
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C. Experimental details
C.1. Experiment 1: Quadratic curves

Here we set f∗(x) = −0.8x2 + 0.5x + 0.1. F and G
include quadratic functions, and H to include linear func-
tions. For uncertainty estimation we used vanilla bootstrap,
and for propensity scores we used logistic regression. For
lookahead, we set λ = 4, τ = 0.95, use k = 10 boot-
strapped models, and train for T = 5 rounds. The data
includes m = 25 samples x drawn from N(−0.8, 0.5), and
y = f∗(x) + ε where ε ∼ N(0, 0.25). We use a 75 : 25
train-test split. The three conditions vary only in η with
values η = 0.75, 1.25, and 3.5.

Quantitative results are given in the table below:

RMSE Imp. rate Imp. mag.

η = 0.75
baseline 0.349 0.857 1.109
lookahead 0.351 0.857 1.108

η = 1.25
baseline 0.342 0.143 -0.261
lookahead 0.424 0.714 1.065

η = 3.5
baseline 0.342 0 -35.13
lookahead 0.675 0.571 0.604

C.2. Experiment 2: Wine quality

The wine dataset includes m = 178 examples and d = 13
features. We learn a quadratic f∗(x) =

∑
i θixi +

∑
i θ
′
ix

2
i .

F , G, and H include linear functions. For uncertainty es-
timation we used residuals bootstrap, and for propensity
scores we used logistic regression. For lookahead, we set
τ = 0.95, use k = 20 bootstrapped models, and train for
T = 10 rounds. For f , we use SGD with a learning rate of
0.1 and 1000 epochs for initialization and 100 additional
epochs per round. For g, each sub-model was trained with
SGD using a learning rate of 0.1 and for 500 epochs. We
set η = 0.5 and η = 2 for the fully and partially mutable
settings, respectively.

C.3. Experiment 3: Diabetes

The diabetes dataset includes m = 442 examples and
d = 10 features. We set f∗(x) to be a generalized addi-
tive model (GAM) with splines of degree 10 trained on the
entire dataset and tuned using cross-validation. In the first
setting, F , G, and H include linear functions. In the second
setting, F , G are quadratic functions (i.e., linear in xi and
in x2i ) and H remains linear. For uncertainty estimation
we used quantile regression, and for propensity scores we
used logistic regression. For lookahead, we set τ = 0.95
and train for T = 10 rounds. For f , we use SGD with a
learning rate of 0.05 and 1000 epochs for initialization and
100 additional epochs per round. For g, we use SGD with

a learning rate of 0.05 and for 500 epochs. For both linear
and non-linear settings we set η = 5, and normalize y to be
in [0, 1].


