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Abstract
We study pay-per-click auctions where both the
principal and the agents employ learning algo-
rithms to learn the click-through-rates and in-
trinsic values respectively. In this setting, we
illustrate a trade-off between a) effective learn-
ing in a truthful manner and b) robustness to the
presence of adversarial corruptions. We design
a mechanism that balances these two conflict-
ing forces and achieves a graceful degradation
in performance with the amount of corruption in
the data without compromising the performance
when there is no corruption. On the way we
demonstrate that agent-learning introduces addi-
tional challenges in multi-armed bandit mecha-
nisms even at the absence of corruptions, which
may be of independent interest.

1. Introduction
The multi-armed bandit (MAB) problem is among the most
basic and perhaps the most well-studied in sequential deci-
sion making. A learner (or principal) must select one among
k possible actions, often referred to as “arms,” and each arm
a ∈ [k] returns a reward rt(a) to the learner that is sam-
pled according to some fixed distribution F(a). When the
learner selects an arm at at round t, and observes and earns
the reward rt(at), no new information about the other arms
is made available. This information bottleneck presents
the learner with the so-called explore-exploit trade-off : one
can either try to maximize expected reward based on the
currently-available information, or try to select from under-
explored arms in order to enhance future decision-making.

In this paper we consider the application of MAB algorithms
to the design of ad auctions, where advertising inventory
is repeatedly allocated through advertiser bidding, as this
presents a canonical example with an unavoidable explore-
exploit trade-off. The learner in this case is effectively a
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sales platform which must sequentially select one among
many ads to display in response to users’ search queries.
From the perspective of the advertising platform, an arm
corresponds to one of the k advertisers competing to market
their product. Let us give a rough overview of the challenges
of this setting when the ad platform aims to maximize so-
cial welfare; more on this concept later. When the platform
selects an ad to display to the user, the advertiser is only
charged in the event that the user finds the advertisement
of interest and then clicks on it. Clicking an ad doesn’t
automatically lead to a purchase, of course, and the ad only
creates value to the advertiser when it leads to a buying the
advertised product. We need to specify model parameters
for these two stochastic events: assume that each ad a gen-
erates a click by a random user with probability ρ(a) (the
click-through-rate), and in the event the ad is clicked the
user makes a purchasing decision of some value, which we
assume to be an IID random variable with expectation µ(a).
One of the central challenges of designing ad auctions is that
these two parameters are not known in advance, the princi-
pal needs to carefully manage the explore-exploit trade-off
as click statistics and purchase data slowly arrive.

One may notice, however, that the above model did not
address the actions of the advertisers whose own incentives
might lead to unexpected behavior. This poses additional
hurdles to the principal, as the observed rewards may indeed
not be IID but could instead be heavily influenced by strate-
gic considerations. In online advertising, in particular, the
arms are not passive actors but correspond rather to agents
who wish to maximize their individual payoff over the long
term.

There are two prominent forms of gaming that the agents
can employ to increase their individual payoff, potentially
compromising the social welfare. First, typically agents
know their intrinsic value mean µ(a) and make a bid based
on that; if misreporting this information can lead to higher
individual payoff then agents will possibly do so. As a
result, a line of work has focused on designing truthful
multi-armed bandit mechanisms, i.e., making truth-telling a
payoff-maximizing bidding strategy and thus rendering such
attacks ineffective (Devanur & Kakade, 2009; Babaioff et al.,
2014). Another attack aims to manipulate the feedback that
the principal observes. For example, an agent may create a
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bot that either clicks her own ads or does not click competing
ads to adversarially bias the click-through-rate estimates and
make the ad seem less desirable to the principal. A separate
line of work has designed algorithms that are robust to
the presence of such adversarial corruptions in the data
(Lykouris et al., 2018; Gupta et al., 2019).

The two attacks described above can, and unfortunately very
frequently do, occur simultaneously. Indeed this brings us
to the central challenge that we aim to address in the present
work: existing techniques that have attempted to defend
against the first attack actually increase vulnerability to the
second, and the same is true vice versa; see the techniques
section below for additional details. Our goal in this paper is
to propose methods to mitigate both vulnerabilities at once,
and this brings us to the following core question:

How can we design MAB mechanisms that are
simultaneously truthful and corruption-robust?

Our results. Towards addressing this question, we consider
the setting of a repeated ad auction where some adversary
is allowed a certain number of corruptions to the feedback.
Precisely, the adversary may adjust no more than C out
of T many rounds, where C is unknown to the principal.
There is no restriction on how the adversary distributes her
corruption budget; it may well be the case that all C first
rounds are corrupted. Mechanism performance is measured
in terms of regret that compares the reward of the mecha-
nism relative to the reward that would be achieved if the
best arm were known in advance. Without the introduction
of corruptions it is known that simple mechanisms (Devanur
& Kakade, 2009; Babaioff et al., 2014) achieve regret on the
order of T 2/3, a rate known to be unimprovable. In simple
MAB, without the introduction of auctions and bids, there
are several “robust” algorithms (Lykouris et al., 2018; Gupta
et al., 2019) whose regret is optimal in T when C = 0 and
gracefully degrades with C otherwise.

We provide a similar guarantee despite the additional re-
quirement of truthfulness. In particular, our regret guarantee
(Theorem 3) achieves the aforementioned desiderata and
remains sublinear as long as the corruption level C = o(T ).
Interestingly, when the arms are well separated (by a notion
of gap), additional degradation in performance starts ap-
pearing only when C = Ω(T 2/3). Subsequently, we move
our attention to the revenue objective where the goal of
the principal is to maximize the payment they collect from
the advertisers. For this objective, we show that the same
algorithm has essentially the same guarantee (Theorem 4)
but the additional degradation starts when C = Ω(T 1/3) as
the revenue objective does not only require to identify the
correct arm but also to ensure that the click-through-rates
are accurate enough to induce the desired payments.

As a test of robustness of our findings, we study what oc-

curs when the agents do not know their intrinsic values but
instead need to also employ a learning algorithm. We show
that, under a natural relaxation of truthfulness, our guaran-
tees seamlessly extend to this setting where agents are also
learning (Theorems 5 and 6). Notably, agent learning does
add more complications to the setting; we show a simple
setting where truthful bidding leads to logarithmic regret
while agent learning renders guarantees o(T 2/3) unattain-
able (Remark 1).

Our techniques. Our technique builds on insights from
prior work on truthful MAB mechanisms and corruption-
robust MAB algorithms but needs to make careful adap-
tations to circumvent the shortcomings they exhibit at the
presence of the additional attack.

The canonical approach for truthful MAB mechanisms
(Babaioff et al., 2014) is the so-called explore-then-commit.
In the explore phase that lasts T 2/3 rounds, the mechanism
selects all arms to create accurate click-through-rate esti-
mates while ignoring the agent bids. In the (commit phase),
it applies a weighted second price auction with weights cor-
responding to the computed estimates. At the presence of
corruptions, this algorithm can fail dramatically; in partic-
ular, if C > T 2/3), the adversary can corrupt the whole
explore phase misleading the principal into believing that
the best arm’s click-through-rate is 0 and causing linear
regret when there is a separation between the best arm and
the second-best.

In contrast, corruption-robust algorithms (Lykouris et al.,
2018; Gupta et al., 2019) employ adaptive exploration
and continuously refine the estimates they have in or-
der to achieve both gap-dependent regret and corruption-
robustness. Since truthfulness requires exploration separa-
tion, i.e., disentangling exploration from exploitation, such
techniques are not directly applicable as they continue ex-
ploring to enhance gap estimation and therefore do not pro-
vide a direct way for the principal to exploit and acquire
revenue.

Our mechanism combines traits of both approaches by using
a multi-layering approach to guarantee adaptive exploration
and corruption-robustness (Lykouris et al., 2018) while also
using exploration separation (Babaioff et al., 2014) within
each layer. One nice technical contribution is a careful
way to connect the layers via using the tightest confidence
intervals among all layers and initializing the confidence
intervals when they fail. This allows us to derive regret
guarantees that are meaningful even for any C = o(T )
unlike previous multi-layering approaches.

Related work. Our work contributes to the literature of
principal learning in auction design in repeated settings
with strategic agents. The pay-per-click auction setting that
we consider has a nice single-dimensional representation
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for each agent which makes multi-armed bandit techniques
amenable to it. At the absence of adversarial corruptions,
truthful multi-armed bandit mechanisms for pay-per-click
auctions were initially studied by Babaioff et al. (Babaioff
et al., 2014), and Devanur and Kakade (Devanur & Kakade,
2009); their results were later extended to contextual multi-
slot setting by Gatti et al (Gatti et al., 2012). Outside of
pay-per-click auctions there are multiple auction settings
where principal learning with strategic agents arises, includ-
ing posted prices (Amin et al., 2013; 2014; Mohri & Munoz,
2014; 2015), reserve prices (Liu et al., 2018), or revenue
maximizing auctions (Abernethy et al., 2019). These works
assume either the bidders discount their future utilities or
assume that the same bidders only shows up for a limited
number of rounds and thus have limited impact over prin-
cipal learning. We don’t make any such assumptions about
the agents’ behavior. Finally, we note that repeated auction
design with strategic agents also arises in many other works
within dynamic mechanism design (Bergemann & Valimaki,
2006; Nazerzadeh et al., 2008; Kakade et al., 2013) for a
non-exhaustive list. All the above works do not extend to
the presence of adversarial corruptions and they also require
the agents to know their exact values at the beginning of
each round; in contrast, we allow learning to also arise at
the agent level (Section 4).

Our work also adds to the growing literature that deviates
from assuming that agents have ex-ante information about
their values but rather studies settings where they need to
learn how to act on the fly. Online learning for an agent
that does not know their value was initially studied in the
context of second-price auctions (Weed et al., 2016) and
subsequently extended to more general settings (Feng et al.,
2018). Another related research direction involves mech-
anism design questions when the principal knows that the
agents are employing no-regret learning to decide their ac-
tions; this was initially suggested in the context of auctions
by Braverman et al. (Braverman et al., 2017) and subse-
quently extended to more general learning strategies (Deng
et al., 2019a) and other game settings (Deng et al., 2019b).
The inverse problem of reacting as a buyer to a no-regret
seller has also been studied in (Heidari et al., 2016).

Finally, the model of adversarial corruptions that we employ
to capture applications such as click fraud was introduced in
(Lykouris et al., 2018), the results were later refined (Gupta
et al., 2019; Zimmert & Seldin, 2019) while another variant
to capture adversarial corruptions was suggested in (Kapoor
et al., 2018). This model provides a way to make stochas-
tic algorithms robust to adversarial corruptions, retaining
the stochastic guarantee when there is no corruption and
achieving a degradation in performance that is graceful to
the amount of corruption. As such, it has been widely ap-
plied in multiple settings such as linear optimization (Li
et al., 2019), assortment optimization (Chen et al., 2019),

reinforcement learning (Lykouris et al., 2019), Gaussian
process bandit optimization (Bogunovic et al., 2020), con-
textual pricing (Krishnamurthy et al., 2020), and prediction
with expert advice (Amir et al., 2020). A related line of
work focuses on designing adversarial attacks against clas-
sical stochastic bandit algorithms allowing higher power to
the adversary (Jun et al., 2018; Liu & Shroff, 2019). Closer
to our work, Feng et al. (Feng et al., 2020) analyze different
classical bandit algorithms with respect to their intrinsic
robustness to particular classes of adversarial corruptions.
Our work is the first to consider the design of algorithms
robust to adversarial corruptions in the presence of strate-
gic behavior by the participants in settings where classical
algorithms are prone to simple attacks such as click fraud.

2. Model
We consider a single-slot pay-per-click (PPC) ad auction,
consisting of repeated auctions with T rounds and K adver-
tisers or agents. At each round, the advertisers compete for
an ad impression and the auctioneer or principal selects one
advertiser to display and a payment to charge.

Classical PPC setting. In the stochastic setting for PPC
auctions, each advertiser or agent j is associated with a click-
through-rate (CTR) ρj which determines the probability
of getting clicked if she is selected by the principal; the
click-through rates are unknown to the principal. More
formally, at round t, each agent j makes a bid btj and the
principal displays the ad of agent at and charges a payment
pt which is not allowed to be above btat . The click indicator
ct is a Bernoulli random variable with mean ρat that is 1
when the displayed ad gets clicked and 0 otherwise; if the
click occurs, the agent pays pt otherwise she does not pay
anything (this is why the auction is called pay-per-click).
Each agent j is also associated with an income vtj ∈ [0, 1]
that comes from a fixed agent-dependent distribution with
mean µj ; we refer to this mean as mean value (or mean
income). Agents are assumed to bid in a way that maximizes
their expected utility which is assumed to be quasilinear,
i.e., value they obtain minus payment (their exact bidding
strategy is formalized below). We initially assume that agent
j knows µj (Section 3) and subsequently extend our results
to a setting where the agent needs to learn it (Section 4).
When players know their mean value, the above model
is exactly the setting studied in previous work on truthful
multi-armed-bandit mechanisms (Devanur & Kakade, 2009;
Babaioff et al., 2014).

PPC with adversarial corruptions. We extend the clas-
sical PPC setting to allow for adversarial corruptions in
observed rewards. Following the model of (Lykouris et al.,
2018), we assume that an adversary can corrupt the results
of the clicks ct and the incomes vtj . The adversary can ob-
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serve all the history of past outcomes until round t as well
as the principal’s distribution at round t but does not have
access to the random selection of arm at; this is consistent
to the adversarial bandit literature. The adversary has a
corruption budget C which we term corruption level and
captures the number of rounds that the adversary is allowed
to corrupt. The corruption level is unknown to the principal.

Regret and performance of mechanism. The principal’s
performance is evaluated by regret which captures the loss
in performance due to the principal not knowing the click-
through-rates in advance. If the principal had access to the
click-through-rates then the welfare-maximizing option is to
select the agent j that has the highest utilization µjρj . For
the revenue objective, in order to not encourage misreporting
on the agent side (formalized below), the highest revenue
that the principal could achieve is determined by the second
highest utilization. More formally the two benchmarks are
the following:

WELOPT(T ) = T ·max
j
ρjµj

REVOPT(T ) = T · smax
j

ρjµj ,

where smax refers to the second highest value. Without loss
of generality, for the rest of the paper, we assume ρ1µ1 ≥
ρ2µ2 ≥ · · · ≥ ρKµK . The welfare and revenue regret
capture the extent to which the principal’s performance is
inferior to the above benchmarks:

WELREG(T ) = T ·max
j
ρjµj −

T∑
t=1

ρatµat

REVREG(T ) = T · smax
j

ρjµj −
T∑
t=1

ptρat .

Truthfulness requirement. In multi-armed bandit mech-
anisms such as pay-per-click auctions, it is important to
induce the agents to not misreport their value; if the mech-
anism exploits the bidding pattern of an agent in order to
charge them higher prices, then this creates incentive to the
bidders to shade their bids which may cause the mechanism
to experience unpredictable behavior. As a result, a desir-
able property in mechanism design is truthfulness which
suggests that truth-telling is a dominant strategy for the
agent, i.e., she cannot increase her utility by misreporting
her value. The following definition quantifies this require-
ment for the case where the agents know their value means.
Definition 1 (Truthful Mechanism). A mechanism is truth-
ful if for any sets of click-through-rates and value means,
every agent j obtains higher expected utility by bidding her
true value btj = µj at every round; in other words, if the
mechanism is truthful, misreporting does not help any agent.

The above definition means that truthful bidding is a dom-
inant strategy for the agents when they know their value.

In Section 4, we suggest an extension of this bidding (c.f.,
Definition 2) that allows the agents to not know their value
means in advance but learn it as time goes by.

Desiderata. At the absence of corruptions and when the
agent knows her mean value, the principal can achieve a
regret guarantee of T 2/3 via a truthful mechanism; this is
unimprovable (Devanur & Kakade, 2009; Babaioff et al.,
2014). Our goal is to recover this guarantee when C =
0, while gracefully degrading with the corruption level C.
Interestingly our regret guarantees are sublinear for any
sublinear corruption level C = o(T ).1

3. Truthful corruption-robust mechanism
when agents know their value

In this section, we present a truthful mechanism for the
basic setting where the agents know their mean value that
satisfies the above desiderata with respect to both welfare
and revenue.

Description of our mechanism. A typical way to achieve
truthfulness when repeatedly interacting with the same set of
agents is to not use the past and present bids of a particular
agent to select the price charged. The classical mechanism
based on this approach for the uncorrupted case (Babaioff
et al., 2014) is a weighted second-price auction. The mech-
anism initially creates weights that are increasing with the
bids (the weight functions are based on click-through-rate
estimates). It subsequently selects the arm with the highest
weight and charges a payment corresponding to the bid that
would have incurred the second weight (this is the intuition
behind the second highest value of the revenue benchmark).
In the uncorrupted case, this can be achieved by simple
explore-then-commit mechanisms.

To handle adversarial corruptions, inspired by (Lykouris
et al., 2018), we employ a multi-layering version of explo-
ration separation: some rounds help learn CTR estimates
while others focus on maximizing welfare/revenue. We cre-
ate log(T 2/3) layers, each containing a confidence interval
for the CTR of each arm. At round t, every layer ` has an
upper confidence bound UCBtj,` and a lower confidence
bound for each arm j; the round is exploration with prob-
ability ∼ log(T )KT−1/3 or expolitation otherwise. This
enables exploration separation desired for truthfulness and
allows us to subsample the corruption we encounter for
the exploration rounds. In expectation, we only encounter
C · log(T )KT−1/3 corruption in exploration rounds as the
adversary does not know the randomness in selecting arms
at round t; if C < T 1/3, the expected effect of corruption is
negligible. The multi-layering scheme addresses corruption

1When C = Θ(T ), the regret needs to scale with C since just
the corrupted rounds cause Θ(T ) regret.
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levels larger than T 1/3 as higher layers ` update with low
probability their respective statistics: the corruption is thus
subsampled by 2−` which enables robustness to corruption
up to T 1/32`. When layer ` is selected in an exploration
round, it updates its respective statistics: number of tri-
als ntj,` for the selected arm j and empirical click-through
rate ρ̂tj,`

If the round is an exploitation round, we employ a weighted
second-price auction similar to the uncorrupted setting but
carefully design the weights to allow the more robust layers
to supervise the performance of the less robust layers. In
particular, each layer ` has a confidence interval for each arm
j; we behave optimistically and treat all layers’ confidence
intervals of each arm as accurate (this is indeed the case with
high probability when C < T 1/3). We then select the agent
whose minimum upper confidence bound UCBtj,` (across
layers `) is the highest. If at any point we have evidence
that a layer is corrupted, i.e., the lowest confidence bound
of an arm in a layer ` is higher than the upper confidence
bound of the same arm in a less robust layer `′ < `, we
reset the estimates of layer `′. This allows more robust
layers to supervise less robust layers and correct mistakes
due to corruption. The algorithm is formally provided in
Algorithm 1. The following lemma shows that it is truthful.

Lemma 1. Algorithm 1 is a truthful mechanism.

Proof. Since bids affect only the current round, the arms
do not have incentive to strategically bid to influence future
outcomes. We now analyze the effect of the bids on the
current round. If the round is an exploration round, then the
bid is irrelevant as the allocation is random and the payment
is 0. If the round is an exploitation round, we employ a
weighted second price auction which is strictly truthful for
any set of weights (bids do not affect these weights). As a
result, Algorithm 1 is truthful.

Welfare guarantee. For the welfare guarantee (Theorem 3),
we first show that the weights wtj used by Algorithm 1 are
always, with high probability, close the true CTRs ρj for all
agents j.

Lemma 2. If the corruption level for the mechanism is C, let
Ĉ = max{T 1/3, C}. With probability at least 1− 8K log T

3T ,
it holds simultaneously for all arms j and all exploitation
rounds t > 3Ĉ log2(T ) of Algorithm 1, the weight wtj ∈[
ρj−2

(√
log(T )

t/2Ĉ
+ 7 log(T )

t/2Ĉ

)
, ρj+2

(√
log(T )

t/2Ĉ
+ 7 log(T )

t/2Ĉ

)]
.

Proof sketch. Similar to (Lykouris et al., 2018), due to the
subsampling of corruption, smallest robust layer `? = log Ĉ
has its confidence interval inside the desired confidence
intervals and does not contradict the confidence intervals
of higher layers. By definition of the weight for j is less
than UCBtj,`? . Since we reset any layer that contradicts

Algorithm 1 MuLES Mechanism (Multi-Layering Explo-
ration Separation MAB Mechanism)
Parameters :Number of arms K, Number of rounds T
Initialize : log(T 2/3) layers, set ρ̂0

j;` ← 0, n0
j;` ← 0 for

all ` ∈ [log(T 2/3)], all j ∈ [K]
1 for t = 1, . . . , T do
2 Receive bid btj from arm j for all j ∈ [K]

3 `t ←

{
` w.p. K log(T )T−1/32−`

0 otherwise
4 if `t > 0 then
5 /* ... Exploration Round ... */

6 at ← j uniformly at random for j ∈ [K]
7 Receive click result ct

8 Charge pt ← 0 /* Payment */
9 for j ∈ [K] do /* Update layer */

10 ntj;` ← nt−1
j;` + 1{`=`t,j=at}

ρ̂tj;` ←
ρ̂t−1
j;` · n

t−1
j;` + ct · 1{`=`t,j=at}

nt−1
j;`

11 end
12 else
13 /* ... Exploitation Round ... */

14 for j ∈ [K] do
15 wtj ← min`

{
ρ̂tj;` +

√
log(T )
nt
j;`

+ 7 log(T )
nt
j;`

}
16 end
17 at ← arg maxj(w

t
j · btj)

18 Receive click result ct

19 Charge price pt ←


smaxj(wt

j ·b
t
j)

wt
at

if ct = 1

0 otherwise
20 end
21 for ` = log T 2/3, log T 2/3 − 1, . . . , 2 do
22 for `′ = `− 1, `− 2, . . . , 1 do
23 for j = 1, . . . ,K do
24 LCBtj,` ← ρ̂tj;` −

√
log(T )
nt
j;`
− 7 log(T )

nt
j;`

25 UCBtj,` ← ρ̂tj;` +
√

log(T )
nt
j;`

+ 7 log(T )
nt
j;`

26 LCBtj,`′ ← ρ̂tj;`′ −
√

log(T )
nt
j;`′
− 7 log(T )

nt
j;`′

27 UCBtj,`′ ← ρ̂tj;` +

√
log(T )
nt
j;`′

+ 7 log(T )
nt
j;`′

28 if [LCBtj,`,UCBtj,`] and [LCBtj,`′ ,UCBtj,`′ ]
don’t overlap then

29 ρ̂tj′;`′ ← 0 /* Reset layer */

30 ntj′;`′ ← 0

31 end
32 end
33 end
34 end
35 end
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more robust layers, it is also higher than LCBtj,`? . As a
result, it also lies within the desired confidence interval.
The complete proof is provided in Appendix A.1.

Theorem 3. If the corruption level for the mechanism is
C, let Ĉ = max{T 1/3, C} and ∆ = minj>1{ρ1µ1−pjµj

µ1+µj
}

then the expected welfare regret WELREG(T ) of Algorithm
1 satisfies

WELREG(T ) ≤K log(T )T 2/3+

16 ·min
{8Ĉ log(T )

∆
,

√
2ĈT log(T )

}
+

14Ĉ log2(T ) +
8K log(T )

3

Note that the welfare regret degrades gracefully as the
corruption level increases. It is Õ(T 2/3) when C = 0
and the leading term in T remains Õ(T 2/3) as long as
C ≤ O(T 1/3). We also note that for C > T 2/3, if the
utilization gap ∆ is large enough, then we obtain gap-
dependant bounds.

Proof sketch for Theorem 3. To bound the welfare regret
WELREG(T ), we divide in two parts, the regret from ex-
ploration rounds WELREG explore(T ) and the regret from
exploitation rounds WELREG exploit(T ). The expected num-
ber of exploration rounds is bounded by K log(T )T 2/3

which bounds WELREG explore(T ). For WELREG exploit(T ),

Lemma 2 implies that after 32Ĉ log(T )
∆2 rounds, the principal

can converge to the best agent with high probability. In the
cases when an agent other than the best agent is picked, we
show that the welfare lost in those rounds is also bounded
as the estimates for CTRs are tight. The complete proof is
provided in Appendix A.2.

Revenue guarantee. Revenue guarantees are harder than
their welfare counterparts because the revenue is affected by
the exact payments charged by the principal. For welfare,
it suffices to show that once we converge to the best arm,
then the principal incurs no further regret. For revenue, even
when the principal converges to the best arm, if the estimates
of the CTRs are not tight, then we may end up undercharging
and lose more revenue. Our revenue guarantee (Theorem 4)
is thus not gap-dependent even when the utilization gap ∆
is large. Other than that, the guarantee achieves the same
desiderata as Theorem 3. The proof follows similar steps
and is deferred to Appendix A.3.

Theorem 4. If the corruption level for the mechanism is
C, let Ĉ = max{T 1/3, C} then the expected revenue regret
REVREG(T ) of Algorithm 1 satisfies

REVREG(T ) ≤ Õ
(
KT 2/3 +

√
ĈT
)

where Õ(·) hides polylog(T ) terms.

4. Extensions when agents do not know their
value

When agents do not know their mean value, truthful bid-
ding is not an option. Lemma 2 establishes that the princi-
pal can obtain a confidence interval of radius W (t, C) =

4

√
2Ĉ log(T )

t where Ĉ = max{C, T 1/3} on each agent’s
CTR via the exploration phase. When agent j is selected in
the exploration phase, she receives information about her
value with probability equal to ρj (if clicked). Our relax-
ation of truthful bidding is that the agents mostly bid based
on these confidence intervals.

Definition 2 ((γ, δ)-Confidence Bidding). If the corruption
level of the mechanism is C, let Ĉ = max{T 1/3, C} and

denote W (t, C) = 4

√
2Ĉ log(T )

t . Agents are γ-confidence
bidding if, with probability at least 1− δ, their bids at all
rounds are within µtj ± γW (ρjt, C).

Note that this is a reasonable assumption as the agents can
create confidence intervals on the order of W (ρjt, C) and
have reason to do so. Regarding the ability, agents can, for
example, follow the principal’s estimation technique 2 to
create a confidence interval around their empirical mean
of size W (ρjt, C) that with probability 1− 1

T includes the
true mean µtj ; hence using γ = 2 and δ = 1

T guarantees
that the resulting confidence interval (centered around the
empirical mean) includes the empirical mean with high
probability. Regarding the purpose, when the true mean
is indeed within the confidence interval, bidding anything
outside the confidence interval is dominated by bidding
either the upper or the lower confidence bound. Finally,
a nice trait of the above definition is that the quality of
learning is crisply described through the parameter γ. In
particular, when agents know their value and bid truthfully,
this corresponds to γ = 0.

We now show that the welfare guarantees seamlessly extend
to the setting where agents do not know their mean value
and therefore employ confidence bidding instead of truthful
bidding.

Theorem 5. If the corruption level for the mecha-
nism is C, let Ĉ = max{T 1/3, C} and ∆ =
minj>1

p1µ1−pjµj

µ1+µj+γ(4+
√
ρ1+
√
ρj) . If all agents are (γ, δ)-

confidence bidding, then the welfare regret WELREG(T )
of Algorithm 1 satisfies

WELREG(T ) ≤ K(δT + log(T )T 2/3)+

2They can also apply any other robust estimation technique and
use information from the exploitation rounds which the principal
is not allowed to do in order to maintain exploration separation.
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16(1 + 3γ) min
{8 log(T )Ĉ

∆
,

√
2 log(T )ĈT

}
+

14Ĉ log2(T ) +
8K log(T )

3

We can see that if we have γ = 0 and δ = 0, i.e. if the arms
behave truthfully then we exactly recover the welfare regret
from Theorem 3. For corruption level C = o(T 1/3), the
regret from exploration rounds is dominant and independent
of the bids reported. The regret decays smoothly with the
quality of agent learning as expressed by γ.

The proof is similar to Theorem 3 but has the additional
complication that we may need more rounds before we con-
verge to the best agent as the allocation rule in exploitation
rounds depends on the reported bids. If the latter are far
from the true mean values, we are now more likely to select
non-optimal agents and may lose more welfare in exploita-
tion rounds. The complete proof for Theorem 5 is provided
in Appendix B.1.

Regarding the revenue regret, we use similar analysis as
Theorem 4, but this time the bids are not truthful. This
leads to extra complications as the payments estimated and
charged by the principal in exploit rounds might be even
lower than what we had in Theorem 4.
Theorem 6. If the corruption level for the mechanism is C,
let Ĉ = max{T 1/3, C}. If all agents are (γ, δ)-confidence
bidding, the revenue regret REVREG(T ) of Algorithm 1
satisfies

REVREG(T ) ≤ Õ
(
K(T 2/3 + δT ) + (1 + γ)

√
2ĈT

)
where Õ(·) hides polylog(T ) terms.

The exact bound and the proof of Theorem 6 can be found
in the Appendix B.2.

If the agents do not know their mean values and are trying
to learn it during the rounds of the mechanism, the agent
learning adds significant challenges in itself even when there
are no corruptions.
Remark 1. Assume that there are no corruptions. When
the agents know their true values, and the principal has
a lower bound on the gap minj>1

ρ1µ1−ρjµj

µ1+µ2
≥ ∆, then

within Õ( K∆2 ) rounds, the principal can converge on the
best arm and incur only Õ( K∆2 ) revenue regret.

In contrast, when the agents don’t know their values and
even if the principal knows the exact CTRs, the principal
has to spend O(KT 2/3) rounds for exploration so that the
agents get O(T 2/3) samples to estimate their values. If not,
the agents’ bids might be far off from the true value and
the principal ends up picking non-optimal agents or under-
charging. Thus the agent has to incur at least O(KT 2/3)

revenue regret and cannot obtain a gap dependent regret
even for large gaps.
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Supplementary Material
A. Omitted proofs from Section 3
A.1. Proof of Lemma 2

Proof of Lemma 2. The idea in the proof is similar to (Lykouris et al., 2018). Due to the subsampling of corruption, the
smallest robust layer `? = log Ĉ has its confidence interval inside the desired confidence intervals and does not contradict
the confidence intervals of higher layers. By definition of the weight for j, wtj is less than UCBtj,`? . Since we reset any
layer that contradicts more robust layers, it is also higher than LCBtj,`? . As a result, it also lies within the desired confidence
interval. Here are the details.

Let’s call layer `? = max{1, dlog(C/T 1/3)e} the dominant layer. The probability that `? is selected in an Explore round is
log(T )T−1/32−`

? ∈ [log(T )/2Ĉ, log(T )/Ĉ].

Let ρ̃tj;`? be the empirical mean of the clicks received by arm j in layer `? until round t and ntj;`? be the number of times

arm j is chosen in layer `? by then. Using Hoeffding’s inequality from Lemma 8, we have that |ρj − ρ̃tj;`? | ≤
√

log(T )
nt
j;`?

with probability at least 1 − 2/T 2. Let ρ̂tj;`? be the empirical mean of clicks estimated by the layer in presence of
corruption. Since the expected number of corruption that this layer experience is at most log(T ), by Chernoff upper tail
from Lemma 7, the corruption this layer experience is less than 7 log(T ) with probability 1− 1/T 2 at least. So we have
|ρ̂tj;`? · ntj;`? − ρ̃tj;`? · ntj;`? | ≤ 7 log(T ) with probability 1− 1/T 2 at least, which gives us that |ρ̂tj;`? − ρ̃tj;`? | ≤

7 log(T )
nt
j;`?

.

Thus, by union bound, |ρj − ρ̂tj;`? | ≤
√

log(T )
nt
j;`?

+ 7 log(T )
nt
j;`?

with probability at least 1− 3/T 2.

For any layer ` > `?, it receives less corrupted data than `? in expectation, so ρj ∈
[
ρ̂tj;` −

(√
log(T )
nt
j;l

+ 7 log(T )
nt
j;`

)
, ρ̂tj;` +(√

log(T )
nt
j;`

+ 7 log(T )
nt
j;`

)]
with probability at least 1 − 3

T 2 . For any layer ` < `?, it’s intervals must have overlap with the
dominant interval or they will be reset immediately in the Reset Phase of Algorithm 1.

If all layers ` ≥ `? contain ρj in their interval at round t for all j, the dominant layer will never be reset. Let H be the event
`? is never reset and that for all arms j, ρj is inside the interval maintained by layer `?. Using union bound over all 2

3 logT

layers, all K arms and all T rounds, event H happens with probability at least 1− 6K log(T )
3T . When event H happens then

for all t and arms j,

wtj = min
`
ρ̂tj;` +

(√ log(T )

ntj;`
+

7 log(T )

ntj;`

)
≤ ρ̂tj;`? +

(√ log(T )

ntj;`?
+

7 log(T )

ntj;`?

)
and for any layer `,

ρ̂tj;` +
(√ log(T )

ntj;`
+

7 log(T )

ntj;`

)
≥ ρ̂tj;`? −

(√ log(T )

ntj;`?
+

7 log(T )

ntj;`?

)

Also, when H happens, for every round t and arm j, E[ntj;`? ] = t log(T )/T−1/32−`
?

in expectation, which is at least
t log(T )/2Ĉ. By Chernoff lower tail from Lemma 7, we have ntj;`? > t/2Ĉ with probability 1 − 1/T 2 at least when
t > 3Ĉ log2(T ). Thus for all rounds t > 3Ĉ log2(T ) and arms j,

wtj ∈
[
ρj − 2

(√ log(T )

t/2Ĉ
+

7 log(T )

t/2Ĉ

)
, ρj + 2

(√ log(T )

t/2Ĉ
+

7 log(T )

t/2Ĉ

)]
with probability at least 1− 8K log(T )

3T .
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Note that for t > 14Ĉ log2(T ), with probability at least 1− 8K log(T )
3T ,

wtj ∈
[
ρj − 4

√
log(T )

t/2Ĉ
, ρj + 4

√
log(T )

t/2Ĉ

]
(1)

A.2. Proof of Theorem 3

Proof of Theorem 3. Recall that WELREG(T ) = Tρ1µ1 −
∑
t ρatµat where at is the arm picked at round t. Let’s divide

the WELREG(T ) into the regret from exploration rounds WELREG explore(T ) and the regret from exploitation rounds
WELREG exploit(T ).

The expected number of explore rounds is
∑T
t=1

∑log T 2/3

`=1 K log(T ) log T−1/32−` ≤ K log(T )T 2/3. Thus
WELREG explore(T ) ≤ K log(T )T 2/3.

Define "good" event G such that at every round t > 14Ĉ log2(T ), for every arm j, the weight wtj ∈ [ρj − 4
√

log(T )

t/2Ĉ
, ρj +

4
√

log(T )

t/2Ĉ
]. Using Lemma 2 (in particular Eq. (1)), G happens with probability at least 1− 8K log(T )

3T since all rewards are

in [0, 1]. The regret from rounds where t < 14Ĉ log2(T ) can be bound by 14Ĉ log2(T ), and henceforth we only focus on
the rounds t > 14Ĉ log2(T ) where event G is defined. Recall that ∆ = minj>1{ρ1µ1−pjµj

µ1+µj
}. Assuming G is true, using

Eq. (1) and the fact that for t > 32Ĉ log(T )
∆2 , it holds that:

wt1µ1 ≥
(
ρ1 − 4

√
log(T )

t/2Ĉ

)
µ1 ≥

(
ρ1 − 4

√
log(T )∆2

32Ĉ log T/2Ĉ

)
µ1 = (ρ1 −∆)µ1

≥ max
j>1

(ρj + ∆)µj ≥ max
j>1

(
ρj + 4

√
log(T )

t/2Ĉ

)
µj ≥ max

j>1
wtjµj

Thus if G is true, then for t > 32Ĉ log(T )
∆2 the first arm will always be picked. For the earlier rounds, if an arm j 6= 1 is

picked then

wtjµj ≥ wt1µ1

=⇒
(
ρj + 4

√
log(T )

t/2Ĉ

)
µj ≥

(
ρ1 − 4

√
log(T )

t/2Ĉ

)
µ1

Thus regret from this round is

ρ1µ1 − ρjµj ≤ 4(µ1 + µj)

√
log(T )

t/2Ĉ
≤ 8

√
log(T )

t/2Ĉ

The total expected regret from exploit rounds WELREG explore(T ) when the "good" event G occurs can be bound by:

WELREG exploit|G(T ) ≤
min{ 32Ĉ log(T )

∆2 ,T}∑
t

8 ·

√
log(T )

t/2Ĉ

≤ 16 min
{8Ĉ log(T )

∆
,
√

2CT log(T )
}

When good event G doesn’t occur, R exploit|G(T ) is at most T . We get

WELREG exploit(T ) ≤ Pr{G} · 16 min
{8Ĉ log(T )

∆
,
√

2CT log(T ) + Pr{G
}
T

≤ 16 ·min
{8Ĉ log(T )

∆
,
√

2CT log(T )
}

+
8K log(T )

3

(2)

Adding WELREG exploit(T ) and WELREG exploit(T ) and 14Ĉ log2(T ) completes the proof.
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A.3. Proof of Theorem 4

Proof of Theorem 4. Recall that the revenue regret REVREG(T ) = Tρ2µ2−
∑
t Ptρat . Similar to the proof for Theorem 3,

we divide REVREG(T ) into the exploration regret REVREG explore(T ) and the exploitation regret REVREG exploit(T ). Using
similar arguments as Theorem 3, REVREG explore(T ) ≤ K log(T )T 2/3

The arm chosen in an exploit round t is at = arg maxj w
t
jµj . Recall that smax denotes the second maximum. The

expected revenue from this round is then ptρat =
smaxj w

t
jµj

wt
at

· ρat . As in Theorem 3, we define "good" event G that at

every round t > 14Ĉ log2(T ) and every arm j, the weight wtj ∈
[
ρj − 4

√
log(T )

t/2Ĉ
, ρj + 4

√
log(T )

t/2Ĉ

]
. The regret from rounds

t < 14Ĉ log2(T ) can be bound by 14Ĉ log2(T ), and henceforth we only focus on rounds t > 14Ĉ log2(T ) where event G
is defined.

Denote t? =
(

4
ρ1

√
2log(T )Ĉ + 1

)2

. If G happens and the best arm is not picked, i.e. at 6= 1, then the regret from exploit
rounds can be bounded as

REVREG exploit|G,at>1(T ) =
∑
t:at>1

ρ2µ2 −
smaxj(w

t
jµj)

wtat
· ρat

=
∑
t:at>1

smaxj(w
t
jµj)

wtat

( ρ2µ2

smaxj(wtjµj)
wtat − ρat

)
≤
∑
t:at>1

µat
( ρ2µ2

smaxj(wtjµj)
wtat − ρat

)
≤
∑
t:at>1

µat
( ρ2µ2

smaxj∈[2](w
t
jµj)

wtat − ρat
)

≤ t? +
∑

t>t?,t:at>1

µat
( ρ2µ2

ρ1µ1 − 4µ1

√
log(T )

t/2Ĉ

(ρat + 4

√
log(T )

t/2Ĉ
)− ρat

)

≤ t? +
∑

t>t?,t:at>1

µatρat
(1 + 4

ρat

√
log(T )

t/2Ĉ

1− 4
ρ1

√
log(T )

t/2Ĉ

− 1
)

≤ t? +
∑

t>t?,t:at>1

4µatρat

(
1
ρ1

+ 1
ρat

)√
log(T )

t/2Ĉ

1− 4
ρ1

√
log(T )

t/2Ĉ

≤ t? + 8
∑

t>t?,t:at>1

√
log(T )

t/2Ĉ

1− 4
ρ1

√
log(T )

t/2Ĉ

≤
( 4

ρ1

√
2log(T )Ĉ + 1

)2

+ 16

√
2 log(T )TĈ +

64 log2(T )Ĉ

ρ1

If G happens and the best arm is indeed picked, i.e. at = 1, then regret from exploit rounds can be bounded as

REVREG exploit|G,at=1(T ) =
∑
t:at=1

ρ2µ2 −
smaxj(w

t
jµj)

wtat
· ρat

≤
∑
t:at=1

ρ2µ2 −
wt2µ2

wt1
· ρ1

≤
∑
t:at=1

ρ2µ2 −

(
ρ2 − 4

√
log(T )

t/2Ĉ

)
µ2

ρ1 + 4
√

log(T )

t/2Ĉ

· ρ1
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≤
∑
t:at=1

ρ2µ2

(
1−

1− 4
ρ2

√
log(T )

t/2Ĉ

1 + 4
ρ1

√
log(T )

t/2Ĉ

)

≤
∑
t:at=1

4ρ2µ2

(
1
ρ1

+ 1
ρ2

)√
log(T )

t/2Ĉ

1 + 4
ρ1

√
log(T )

t/2Ĉ

≤ 8
∑
t:at=1

√
log(T )

t/2Ĉ

≤ 16

√
2 log(T )TĈ

Hence REVREG exploit(T ) can be bounded as

REVREG exploit(T ) ≤ Pr{G}T + Pr{G}R exploit|G(T )

≤ 8K log(T )

3
+ 32

√
2 log(T )TĈ +

( 4

ρ1

√
2log(T )Ĉ + 1

)2

+
64 log2(T )Ĉ

ρ1

(3)

Adding all the terms, we get

REVREG(T ) ≤14Ĉ log2(T ) +K log(T )T 2/3 + 32

√
2 log(T )TĈ+( 4

ρ1

√
2 log(T )Ĉ + 1

)2

+
64 log2(T )Ĉ

ρ1
+

8K log(T )

3

B. Omitted Proofs From Section 4
B.1. Proof of Theorem 5

Proof of Theorem 5. The proof is similar to the proof for Theorem 3. The only difference is that arms cannot bid truthfully,
but bid in a (γ, δ)-confidence truthful manner. Hence the arm j bids btj ∈

[
µj − 4γ

√
log(T )

t/2Ĉ
, µj + 4γ

√
log(T )

t/2Ĉ

]
for

all but δT rounds. Recall that WELREG(T ) = Tρ1µ1 −
∑
t ρatµat where at is the arm picked at round t. First

let’s consider the "extreme" rounds when the arms bid outside their confidence interval. There can be at most KδT
and thus they contribute at most KδT to the regret. For the rest of the proof, we will assume that each arm j bids
btj ∈

[
µj − 4γ

√
log(T )

t/2Ĉ
, µj + 4γ

√
log(T )

t/2̂C

]
for every round t.

Similar to the proof for Theorem 3, we divide WELREG(T ) into WELREG explore(T ) and WELREG exploit(T ). We can
show that WELREG explore(T ) ≤ K log(T )T 2/3. We again use the definition of the "good" event G that at every round

t > 14Ĉ log2(T ) and every arm j, the weight wtj ∈
[
ρj − 4

√
log(T )

t/2Ĉ
, ρj + 4

√
log(T )

t/2Ĉ

]
. The regret from rounds where

t < 14Ĉ log2(T ) can be bound by 14Ĉ log2(T ), and henceforth we only focus on the rounds t > 14Ĉ log2(T ) where event
G is defined.

Recall that ∆ = minj>1
p1µ1−pjµj

µ1+µj+γ(4+
√
ρ1+
√
ρj) . When G is true, then for t > 32 log(T )Ĉ

∆2 we have

wt1b
t
1 ≥

(
ρ1 − 4

√
log(T )

t/2Ĉ

)(
µ1 − 4γ

√
log(T )

ρ1t/2Ĉ

)
≥ max

j>1

(
ρj + 4

√
log(T )

t/2Ĉ

)(
µj + 4γ

√
log(T )

ρjt/2Ĉ

)
≥ max

j>1
wtjb

t
j



Bridging Truthfulness and Corruption-Robustness in Multi-Armed Bandit Mechanisms

Thus when G is true, for t > 32 log(T )Ĉ
∆2 , the best arm is always picked and we incur no welfare regret for these rounds. For

earlier rounds, if an arm j 6= 1 is picked then,

wtjb
t
j ≥ wt1bt1

=⇒
(
ρj + 4

√
log(T )

t/2Ĉ

)(
µj + 4γ

√
log(T )

ρjt/2Ĉ

)
≥
(
ρ1 − 4

√
log(T )

t/2Ĉ

)(
µ1 − 4γ

√
log(T )

ρ1t/2Ĉ

)
Thus regret from this round is

ρ1µ1 − ρjµj ≤ 4
(
µj + µ1 + γ(4 +

√
ρj +

√
ρ1)
)√

2 log(T )Ĉ/t ≤ 8(1 + 3γ)

√
2 log(T )Ĉ/t

where the last inequality follows from the fact that µj , µ1, ρ1, and ρj are bounded between 0 and 1.

Combining these cases gives us that

WELREG exploit|G(T ) ≤
min{ 32 log(T )Ĉ

∆2 ,T}∑
t

8
(

1 + 3γ
)√

2 log(T )Ĉ/t

≤ 16
(

1 + 3γ
)

min
{8 log(T )Ĉ

∆
,

√
2 log(T )ĈT

}
When G is not true, the regret WELREG exploit|G(T ) is at most T Combining these regrets with the regret from the "extreme"
rounds, we get

WELREG(T ) ≤ δKT + WELREG explore(T ) + Pr{G}WELREG exploit|G(T ) + Pr{G}WELREG exploit|Ḡ(T )

≤ K
(
δT + log(T )T 2/3

)
+ 16

(
1 + 3γ

)
min

{8 log(T )Ĉ

∆
,

√
2 log(T )ĈT

}
+

8K log(T )

3

B.2. Proof of Theorem 6

Proof of Theorem 6. Recall that the welfare regret REVREG(T ) = Tρ2µ2 −
∑
t Ptρat where at is the arm picked at

round t. Similar to the proof for Theorem 5, we divide REVREG(T ) into the exploration regret REVREG explore(T ) and the
exploitation regret REVREG exploit(T ). Using similar arguments as Theorem 3, REVREG explore(T ) ≤ K(log(T )T 2/3 + δT )

The proof for the exploit rounds follows similarly to Theorem 4. The arm chosen in round t, at = arg maxj w
t
jb
t
j and

revenue is pt ·ρat =
smaxj w

t
jb

t
j

wt
at

·ρat . We again use the definition of the "good" event G that at every round t > 14Ĉ log2(T )

and every arm j, the weight wtj ∈
[
ρj − 4

√
log(T )

t/2Ĉ
, ρj + 4

√
log(T )

t/2Ĉ

]
. The regret from rounds where t < 14Ĉ log2(T ) can

be bound by 14Ĉ log2(T ), and henceforth we only focus on the rounds t > 14Ĉ log2(T ) where event G is defined.

There are two possible cases, the best arm is chosen i.e. at = 1 or the non-optimal arm is chosen, i.e. at > 1. When G is

true, let t? =
(

4

√
2Ĉ log(T )( 1

ρ1
+ 1√

ρ1µ1
) + 1

)2

.

REVREGExploit|G,at>1(T ) =
∑
t:at>1

ρ2µ2 −
smaxj(w

t
jb
t
j)

wtat
· ρat

=
∑
t:at>1

smaxj(w
t
jb
t
j)

wtat

( ρ2µ2

smaxj(wtjb
t
j)
wtat − ρat

)
≤
∑
t:at>1

btat
( ρ2µ2

smaxj(wtjb
t
j)
wtat − ρat

)
≤
∑
t:at>1

btat
( ρ2µ2

smaxj∈[2](w
t
jb
t
j)
wtat − ρat

)
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≤ t? +
∑

t>t?,t:at>1

(
µat + 4γ

√
log(T )

ρatt/2Ĉ

)
·
( ρ2µ2

(ρ1 − 4
√

log(T )

t/2Ĉ
)(µ1 − 4γ

√
log(T )

ρ1t/2Ĉ
)

(
ρat + 4

√
log(T )

t/2Ĉ

)
− ρat

)

≤ t? +
∑

t>t?,t:at>1

4
(
µat +

µatρat

ρ1
+
γρatµat√
ρ1µ1

) √
log(T )

t/2Ĉ

1− 4( 1
ρ1

+ γ√
ρ1µ1

)
√

log(T )

t/2Ĉ

+

16
(

1 +
ρat

ρ1
+

γρat√
ρ1µ1

) log(T )2Ĉ
√
ρ1

1

t− 4( 1
ρ1

+ γ√
ρ1µ1

)

√
log(T )2Ĉt

≤
(

8

√
2Ĉ log(T )

ρ1µ1
+ 1
)2

+ 8(2 + γ)

√
2 log(T )ĈT +

96(γ2 + 2γ + 2)

(ρ1µ1)3/2
log2(T )Ĉ

For the case when at = 1, using that ρ2µ2 ≤ ρ1µ1 and also µ1, µ2 ≤ 1, similar to before it holds that:

REVREGExploit|G,at=1(T ) =
∑
t:at=1

ρ2µ2 −
smaxj(w

t
jb
t
j)

wtat
· ρat

≤
∑
t:at=1

ρ2µ2 −
wt2b

t
2

wt1
· ρ1

≤
∑
t:at=1

ρ2µ2 −

(
ρ2 − 4

√
log(T )

t/2Ĉ

)(
µ2 − 4γ

√
log(T )

ρ2t/2Ĉ

)
ρ1 + 4

√
log(T )

t/2Ĉ

· ρ1

≤
∑
t:at=1

ρ2µ2

(
1−

(1− 4
ρ2

√
log(T )

t/2Ĉ
)(1− 4γ√

ρ2

√
log(T )

t/2Ĉ
)

1 + 4
ρ1

√
log(T )

t/2Ĉ

)

≤
∑
t:at=1

ρ2µ2

4
(

1
ρ1

+ 1
ρ2

+ γ√
ρ2

)√
log(T )

t/2Ĉ

1 + 4
ρ1

√
log(T )

t/2Ĉ

≤ 8(2 + γ)

√
2 log(T )ĈT

So the total regret is bound by

REVREG(T ) ≤ 14Ĉ log2(T ) +K(log(T )T 2/3 + δT ) + Pr{G}T + Pr{G}REVREGExploit|G(T )

≤ 14Ĉ log2(T ) +K
(

log(T )T 2/3 + δT
)

+
8K log(T )

3
+
(

8

√
2Ĉ log(T )

ρ1µ1
+ 1
)2

+

16(2 + γ)

√
2 log(T )ĈT +

96
(
γ2 + 2γ + 2

)
(ρ1µ1)3/2

log2(T )Ĉ

C. Auxiliary lemmas
Lemma 7 (Chernoff Bounds). Let X1, . . . , Xn be independent random variables, and Xi lies in the interval [0, 1]. Define
X =

∑n
i=1Xi and denote E[X] = µ. For any δ ∈ [0, 1], we have Chernoff lower tail:

Pr{X < (1− δ)µ} ≤ exp(−µδ
2

3
)
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and we have Chernoff upper tail:

Pr{X > (1 + δ)µ} ≤

{
exp(−µδ3 ) for δ > 1

exp(−µδ
2

3 ) for δ ∈ [0, 1]

The proofs for the inequalities in Lemma 7 can be found in Theorem 4.4 and Theorem 4.5 of (Mitzenmacher & Upfal, 2017)

Lemma 8 (Hoeffding’s Inequality (Hoeffding, 1994)). Let X1, . . . , Xn be independent random variables, and Xi lies in
the interval [0, 1]. Define X =

∑n
i=1Xi and denote E[X] = µ. For X and any t > 0, Hoeffding inequality gives

Pr{|X − µ| > t} ≤ 2 exp(−2t2/n)


