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Abstract

There is an increasing use of algorithms to inform decisions in many settings, from student
evaluations, college admissions, to credit scoring. These decisions are made by applying a decision
rule to individual’s observed features. Given the impacts of these decisions on individuals, decision
makers are increasingly required to be transparent on their decision making to offer the “right to
explanation.” Meanwhile, being transparent also invites potential manipulations, also known
as gaming, that the individuals can utilize the knowledge to strategically alter their features in
order to receive a more beneficial decision.

In this work, we study the problem of robust decision-making under strategic behavior. Prior
works in decision making under strategic behavior often assume that the decision maker has full
knowledge of individuals’ cost structure for manipulations. We study the robust variant that
relaxes this assumption: The decision maker does not have full knowledge but knows only a subset
of the individuals’ available actions and associated costs. To approach this non-quantifiable
uncertainty, we define robustness based on the worst-case guarantee of a decision, over all possible
actions (including actions unknown to the decision maker) individuals might take. A decision
rule is called robust optimal if its worst case performance is (weakly) better than that of all other
decision rules. Our main results provide a crisp characterization of the above robust optimality:
For any decision rules under mild conditions that are robust optimal, there exists a linear decision
rule that is equally robust optimal. We believe this characterization promotes the use of simple
linear decisions with uncertain individual manipulations.

1 Introduction

Algorithms have been increasingly engaged in making consequential decisions across a variety of
sectors in our society. Examples include judges using defendant risk scores to set bail decisions and
banks evaluating individuals’ profiles to make loan decisions. In all these scenarios, the decision
maker aims to determine a decision rule (or a model), which takes a set of individual’s observed
behavior or features as input, and output decisions that maximize some given utility function1.

Given the consequential impacts to individuals, there is an increasing demand to make the decision
rule transparant to offer “right to explanation” (See, for example, Goodman and Flaxman (2017)).
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Transparency not only allows the public to audit models to mitigate potential fairness concerns
but also enables the participants to understand what decisions they might receive if they have
different features (See, for example, “right to recourse” (Ustun et al., 2019)). However, on the flip
side, transparency simultaneously incentivizes individuals to “game” the deployed model. Specifically,
if individuals understand how their observed features affect decisions, they may strategically alter
their features to obtain a more favorable decision.

In response to this “gaming” behavior, there has been a recent flurry of work in studying these
decison making under strategic behavior (Brückner et al., 2012; Brückner and Scheffer, 2011; Hardt
et al., 2016; Kleinberg and Raghavan, 2019; Alon et al., 2020). To make the analysis tractable,
almost all the works explicitly assume the decision maker has the full knowledge of costs that agents
would incur to manipulate their behavior, as well as the action spaces that the agents might take
actions from. The above knowledge enables a game theoretic analysis with characterizing agents’
best responses when offered a particular decision rule.
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(b)

Figure 1: An instance of student evaluation problem.

However, the “full information” assumption is often not true in practice. Consider an example of
student evaluation in Fig. 1 (Kleinberg and Raghavan, 2019; Alon et al., 2020). The student’s
observed features are their exam score (x1) and homework score (x2). The student can choose to take
either actions, studying (a1) or copying homework answers (a2), to alter their features. Studying
improves both exam score (x1) and homework score (x2), while copying homework only improves
homework score. The teacher evaluates the student through a final score, which is a function of x1

and x2, and students are assumed to aim to maximize their final score minus the cost of the actions.
If the teacher knows the actions a1 and a2, and they are indeed the only actions the student can take,
a decision rule can be designed (outputs a final score as a function of x1 and x2) that maximizes
some given objective by considering students’ best responses. However, in practice, the teacher
might not be aware of the full set of actions the student can take. For instance, the student might
consider taking action a0 unknown to the teacher (in Fig. 1b), such as hiring a tutor or working with
other students. With this incomplete knowledge of the student’s actions, how should the teacher
design her evaluation rule?

In this work, we answer the above question by studying the design of robust optimal decision rules
with strategic agent, where we relax the assumption of complete knowledge over agent actions.
We define the robustness notion as used in robust contract design (Carroll, 2015): Evaluate the
worst-case guarantee of a decision, over all possible actions (including actions unknown to the
decision maker) agents might take. More formally, the decision maker only knows a subset of actions
(denoted by Ad) among all the actions available to the the agent (denoted by Aa). Let Vd(f |Aa) be
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the utility the decision maker obtains with decision rule f when the agent’s action space is Aa. The
decision maker’s goal is to maximize her worst-case performance Vd(f) over all possible actions the
agent may have access to (Aa ⊇ Ad):

max
f

Vd(f) = max
f

inf
Aa⊇Ad

Vd(f |Aa). (1)

A decision rule f∗ is robust optimal if it achieves the maximum of the above worst-case utility.

Our contribution We formalize the problem of robust strategic decision-making and characterize
the robust optimal decision rules. We show that under mild conditions, any decision rule could be
(weakly) improved by a linear decision rule, in terms of the worst-case performance. Therefore, for
any robust optimal decision rule, there exists a linear rule that is equally robust optimal. Our proof
hinges on a construction of two convex sets, and a key disjointness argument over these two convex
sets. This enables us to apply hyperplane separation theorem to prove that for any non-linear decision
rule, there exists a linear one which gives a weakly greater guarantee to the decision maker.

We also explore the computational problem of searching for the robust optimal f∗. Given the
characterization, it suffices to search over the space of linear decision rules. However, we show that
finding f∗ is generally NP-hard and offer conditions when efficient solvers might exist.

1.1 Related Work

Our problem closely connects to recent literature in studying classification algorithms in the presence
of strategic manipulation (Hardt et al., 2016; Brückner et al., 2012; Brückner and Scheffer, 2011).
Specifically, Hardt et al. (2016) study the design of optimal classification when the agents can incur
costs to manipulate their features. Motivated by fairness concerns, Hu et al. (2019) and Milli et al.
(2019) consider the scenario in which the costs for manipulation are different for different groups and
explore the societal impacts. There are also works directly utilizing the decision rule as an incentive
device (Kleinberg and Raghavan, 2019; Alon et al., 2020; Haghtalab et al., 2020; Ball, 2020; Dong
et al., 2018; Tabibian et al., 2019; Miller et al., 2019). Among theses works, Kleinberg and Raghavan
(2019) is closest to our work: they introduce a graphic model to capture the known agent’s available
actions and show that simple linear mechanisms suffice for a single known agent. Alon et al. (2020)
then extends the discussion to multiple agents. Our work departs from the above works in the sense
that the decision maker only has incomplete knowledge of the agent’s cost structure or his available
actions.

Our formulation resembles the principal-agent problem in contract theory (Grossman and Hart, 1992;
Shavell, 1979; Holmstrom and Milgrom, 1987), which also studies the strategic interplay between two
interest-misaligned parties. Our characterization of robust decision rule follows the works on robust
contract design (Carroll, 2015; Dai and Toikka, 2017; Miao and Rivera, 2016; Carroll and Segal,
2019; Carroll, 2017; Diamond, 1998; Hansen and Sargent, 2012; Chassang, 2013) in which robustness
is defined as the worst-case optimal mechanisms in various settings. Our model differs from this line
of research in that the decision maker determines a decision rule (instead of a “contract” in contract
theory) that is multi-dimensional and could take arbitrary forms. Moreover, we do not restrict the
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decision maker’s utility to be in additive form (reward minus the payment). We generalize the utility
to be arbitrary function that satisfies some mild conditions. Other computational approaches to
contract design in computer science community can be found in the work of (Dütting et al., 2019;
Babaioff et al., 2006; Ho et al., 2016; Babaioff et al., 2010). In addition, our work shares similar flavor
for max-min analysis in worst-case algorithmic analysis (Azar et al., 2013; Bandi and Bertsimas,
2014). In all of these works, the setting and the formulation are different from the ones we consider
in the present work.

Our work complements a recent literature on discussing the effects of linear models in social
stratification. For example, Wang et al. (2018) extend the notion of interpretability to credibility
and discuss the credibility in a linear setting. Fawzi et al. (2018) analyze the robustness of linear
classifiers to adversarial perturbations. Ustun and Rudin (2014) and Ustun et al. (2019) discuss the
interpretability and right to recourse in linear classification.

2 A Model of Robust Strategic Decision-making

In this section, we establish notations and then formalize our model. Agent features are represented
by a vector x = (x1, . . . , xn), which takes value in a compact set (it may be finite or infinite) X ⊆ Rn.
An action of the agent can be represented by the outcome and the cost of the action. We use a pair
(F, c) ∈ ∆(X )× R+ to denote an action, where F is the outcome, i.e., the distribution of the agent
features after taking a particular action, and c is the associated cost. Using (F, c) simplifies our
presentation, and note that the physical meaning of an action does not carry much weights. All
that matter to the agent are the outcome features and the cost. The cost c can be interpreted as
effort, monetary cost, or as simply describing the agent’s preferences over the available actions. The
decision maker cannot observe the agent’s action but can only observe the features, the realized
outcome of the action.

Action set We define two important action sets Aa and Ad. In particular, Aa ⊆ ∆(X )× R+ is
the set of all possible actions that the agent can take, and Ad is the set of action that the decision
maker is aware of. While the decision maker only knows Ad and not Aa, she knows that Ad ⊆ Aa.
The decision maker’s unquantifiable uncertainty of Aa is the key conceptual element of this work.
Using the student evaluation example, the available actions to the student Aa could be (studying,
cheating, hiring tutors). The teacher only knows Ad, (studying, cheating), a subset of Aa but aims
to design a decision rule that is robust to this uncertainty.

Decision rule A decision rule f : X → R+ is a mapping from the agent’s features to a decision,
where the decision domain of f is normalized to be positive. For example, a FICO credit score
is a positive numeric value, which predicts a consumer’s creditworthiness from multiple features
including his length of credit history and default rate. The decision rule f is contingent only on the
observable features, but not on the actions that are not observable to the decision maker.

The decision maker aims to maximize her utility function h : X → R+. This function should be
sufficient to characterize the utility that the agents would bring to the designer. For example, it
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could be a qualification function, assuming that agent’s effort investment in changing their features
may actually lead sometimes to self-improvement, thus in their true qualifications. We assume that
there’s an upper bound C̄ > 0 of f(x) for any x ∈ X . In addition, we also define the following
simple class of decision rules:
Definition 1 (Linear decision rule). A decision rule f is linear if f is a linear function of the feature2,
i.e., f(x) = α>x+β for α ∈ Rn and β ∈ R. Let Glin =

{
(α, β) ∈ Rn × R : f(x) = α>x + β ∈ [0, C̄], ∀x ∈ X

}
be the space of parameter pair (α, β).

The interaction between the decision maker and the agent goes as follows: (1) the decision maker
publishes a decision rule f based on the knowledge of Ad; (2) the agent, knowing Aa, chooses action
(F, c) ∈ Aa to respond to f ; (3) the agent features are then moved to x ∼ F ; (4) the decision maker
derives utility of h(x) and the agent derives utility of f(x)− c.

Robustness of decision making under strategic behavior We first characterize the agent’s
behavior. Given the decision rule f and his available action set Aa, the agent obtains expected
utility EF [f(x)]− c for taking action (F, c). Let A∗a(f |Aa) be the set of actions that maximize the
agent’s utility, and Va(f |Aa) be the corresponding utility:

A∗a(f |Aa) = arg max
(F,c)∈Aa

(EF [f(x)]− c) , Va(f |Aa) = max
(F,c)∈Aa

(EF [f(x)]− c) .

When there are multiple maximizers of the agent’s objective, the agent may choose the action that is
the most beneficial to the decision maker. The expected utility of the decision maker, given decision
rule f and the action set available to the agent Aa is

Vd(f |Aa) = max
(F,c)∈A∗a(f |Aa)

EF [h(x)].

Note that the decision maker only knows Ad but not Aa. Therefore, she cannot optimize Vd(f |Aa)
directly. To address this nonquantifiable uncertainty, we define Vd(f) as the worst case utility the
decision maker obtains over all possible actions sets Aa that are supersets of Ad:

Vd(f) = inf
Aa⊇Ad

Vd(f |Aa). (2)

We define the robust optimal decision rule f∗ as the one that maximizes Vd(f), since it is robust to
any action (even unknown to the decision maker) the agent might take:

f∗ ∈ arg max
f

Vd(f) = arg max
f

inf
Aa⊇Ad

Vd(f |Aa). (3)

Moreover, in this work, we will focus on the following decision rules:
Definition 2. A decision rule f is eligible if Vd(f) > Vd(0) and Vd(0) > 0, where 0 denotes the zero
decision rule.

Eligibility implies that we only care about scenarios that the decision maker would get benefits from
posting the decision rule. While there might exist scenarios that the decision maker gets worse utility
by taking interventions (posting decision rules), we focus on the positive scenario in this work.

2More precisely, it is an affine decision rule with the form of α>x + β.
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3 Main results: Linear Model is Robust Optimal Under Strategic
Behavior

In this section we establish our main result that there exists a linear decision rule that is robust
optimal. The main result in this section is summarized as follows:
Theorem 1. There exists a decision rule f that maximizes Vd(f) and is linear, namely: f ∈
arg maxVd(f),where f(x) = β + α>x, for some α ∈ Rn, β ∈ R.

The above theorem characterizes the robust optimal decision rule defined in (3). The key implication
of the theorem is that, when aiming to find the robust optimal model against strategic responses, it
suffices to only consider linear models.

In the reminder of this section, we provide the proof sketch of the theorem and then use an example to
demonstrate our results. The proof consists of three main steps. We first characterize the properties
of the worst case utility Vd(f) for a given decision rule f ; we then show that any nonlinear decision
rule can be (weakly) improved by a linear decision rule in terms of the worst case utility. Finally, we
wrap up by showing the existence of an optimal linear decision rule in the linear decision space.

3.1 Characterizing the worst-case utility Vd(f)

We first characterize the worst-case utility guarantee for any given eligible decision rule.
Lemma 1. Let f be any eligible decision rule. Define a set Γ = {F ∈ ∆(X ) : EF [f(x)] ≥ Va(f |Ad)}.
Then one of the following two cases occurs:

(i) Vd(f) = min
F∈Γ

EF [h(x)]; (4)

or (ii) max
F∈∆(X )

EF [f(x)] = Va(f |Ad). (5)

Moreover, for F attaining the minimum in (4), then the inequality in Γ will reduce to equality at F .

The key message of this lemma is that, we can replace the definition of Vd(f) in (2), that depends
on unknown Aa, with an expression that depends only on variables known to the decision maker.
In particular, in case (i), this is given by identifying F which is constrained by Va(f |Ad) using the
designer’s knowledge Ad. In case (ii), we know that the best response from the agent is indeed in
Ad, so again the designer can focus on the action space she is aware of.

We now sketch the proof as follows, the details of which we relegate to the Appendix A.

Proof Sketch. Note that for any action set Aa ⊇ Ad the agent has, and any optimal action (F, c) he
chooses under Aa and the eligible decision rule f , his expected utility he gets from f must satisfy:

EF [f(x)] ≥ EF [f(x)]− c = Va(f |Aa) ≥ Va(f |Ad). (6)

Here the second inequality holds because Aa contains Ad, and having more actions available can
only make the agent better off. Thus, for any decision rule f , the agent will only take the actions
that guarantee himself a utility that is at least Va(f |Ad), these action actually formulates the set Γ.
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Furthermore, the decision maker’s utility Vd(f |Aa) = EF [h(x)] is at the least the minimum given by
Eqn. (4). Thus, we have Vd(f) ≥ minF∈Γ EF [h(x)]. To show this is actually tight, we then prove
the other direction. To achieve that, we construct some worst case action set Aa to guarantee that
Vd(f) cannot exceed minF∈Γ EF [h(x)]. Case (ii) is simply the boundary case in which the agent’s
best action under any possible actions sets is already included in Ad.

3.2 Improving nonlinear decision rule to a linear rule

Having characterized the worst-case utility guarantee of decision maker, we can now show that any
nonlinear decision rule can be (weakly) improved by a linear decision rule in terms of its Vd(f).
Lemma 2. Fix any h and any (nonlinear) eligible decision rule f , there exists a linear one f ′ such
that: Vd(f ′) ≥ Vd(f).

We give a proof sketch of Lemma 2 below, the detailed proof of this lemma is deferred to Ap-
pendix B.

Proof Sketch. We illustrate our proof sketch graphically using Figure 2. At a very high-level, we show
that for every decision rule f , we can construct two convex sets, with one containing information
about the agent and one about the decision maker. We then show that the two convex sets are
disjoint, and therefore there exists a hyperplane that separates the two convex sets. Then it turns
out that separating hyperplane is the linear decision rule that weakly improves on f .

Given a decision rule f , consider a point (EF [x],EF [f(x)])

generated by any possible action (F, c). This point will be in
the convex hull of (x, f(x)). We define S to be the convex
hull of all pairs (x, f(x)), for x ∈ X . To construct another
convex set, we separately consider the two cases in Lemma 1.
For case (i), we define t(x) = max{Va(f |Ad), h(x) + f(x)−
Vd(f)}. Intuitively, t(x) is constructed to accommodate the
constraint in the set Γ for Eqn. (4). We define T as the
convex hull of all pairs (x, z) that x lies in the convex hull
of X , and z > t(x). By utilizing the results in Lemma 1, we
can show that the two convex sets are disjoint (details in
Appendix). By hyperplane separation theorem, we can find
a hyperplane f ′ separating S and T . f ′ has two advantages:
First it gives the agent the same incentive as f . Second,
it gives a weakly greater guarantee to the decision maker.
For case (ii), we change the set T to be the set of all (x, z)

with x in the convex hull of X and z > Va(f |Ad). Similar
arguments in case (i) still apply here.

x
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Figure 2: Illustrate S and T when n =

1. The blue line is f(x) and its associated
convex hull in blue shaded region (the top
blue triangle is the set Γ). Black line is t(x).
The black shaded region is the convex hull
for all points (x, z) where z > t(x). The red
line is the hyperplane to separate S and T .
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3.3 Wrapping up

We have shown that any eligible decision rule f can be (weakly) improved to a linear one. We now
wrap up our analysis by showing the existence of an optimum within the class of linear decision
rules.
Lemma 3. There exists a robust optimal linear decision rule.

Recall our definition of Glin in Definition 1. The proof reduces to show that Vd(f) is upper semi-
continuous w.r.t. (α, β) ∈ Glin, this guarantees that Vd(f) has a maximum over the compact set Glin.
We defer the proof to Appendix C.

3.4 Illustrating example: Student evaluation

We now use the example of student evaluation to demonstrate our results obtained in this section.
We first illustrate the application of Lemma 2: For a particular nonlinear decision rule, we show
how to find an improved linear decision rule. Then, we compute the worst case utility for both
decision rules according to Lemma 1. Finally, we return to the environment with student being able
to take actions unknown to the teacher, as depicted in Fig. 1b to discuss how these two decision
rules perform.

We first specify the environment details of our example. Suppose each feature is a binary variable in
{0, 1} (e.g., x1: pass or fail the exam, x2 : whether the homework is qualified or not). With an effort
budget of size 1, the student needs to decide how to allocate his effort to each action (we denote effort
for action aj by ej) 3. The effort-feature conversion obeys the following rule: P(xi = 1) =

∑
j wj,i · ej ,

where wj,i ∈ [0, 1] controls a weight on how the student’s effort ej ∈ [0, 1] on action aj contributes
to the value of feature xi. For example, a student may study for the exam and still fail with some
(small) probability. The effort-feature conversion weights are detailed in Fig. 3a.

Suppose for a moment the student’s available actions are {a1, a2}. The teacher wants to incentivize
the student to invest all their efforts on studying (namely, the action a1), thus, the teacher can
set her utility function as h(x) = α>h x + βh, where αh = (1, 0) and βh is a small positive value4.
One (nonlinear) decision rule that maximizes h(x) is f(x) = max{x1, x2}. It is easy to verify that
this decision rule results in the student to invest all his effort to action a1 (i.e., e1 = 1), and leads
to the teacher’s utility of p. Now suppose the student can take actions unknown to the teacher.
Our Lemma 2 tells us we can find a linear one to improve this nonlinear decision rule. Specifically,
upon defining the convex sets S and T for f , we can find one hyperplane f ′(x) = x1 + x2 that
separates these two sets. We illustrate this in Fig. 3b. Furthermore, we compute the worst-case
utility for f ′ and f to see if f ′ is indeed better than f in terms of worst case performance. For
f ′, by Eqn. (4) in Lemma 1, Vd(f ′) = minF∈∆(X ) EF [h(x)] = minF∈∆(X ) EF [x1] + β, where F
satisfies EF [f ′(x)] = EF [x1 + x2] ≥ Va(f

′|Ad). Observe that, when the student’s available action
set Ad is depicted as in Fig. 3a, Va(f ′|Ad) = 2p. Since when F attains the minimum of Vd(f ′),

3We assume the cost per unit effort is small enough so that the student is incentivized to exhaust his efforts.
Another modeling choice is that the student will incur a fixed cost per unit effort with no budget. In fact, the two
models are equivalent generally (Kleinberg and Raghavan, 2019).

4βh can be used to guarantee the decision rules are eligible.

8



the inequality must bind. As a result, we will have minF∆(X ) EF [x1] = 2p − 1, which gives us
Vd(f

′) = 2p− 1 + βh. However, follow the same analysis, one can compute that Vd(f) = βh, which is
smaller than 2p− 1 + βh.

a2
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(b)

Figure 3: (a): p ∈ (0.5, 1) is the weight parameter. (b): Construct S and T when f(x) = max{x1, x2}.
The gray shaded region is the set T (we actually plot the convex hull of all points (x, t(x))), while
the light sky blue is the set S. The color hyperplane is exactly f ′(x) = x1 + x2.

Moreover, f ′ does outperform f for our example with the student being
able to take one action unknown to the teacher, as introduced in Fig. 1b.
Suppose the student has one more action a0 available to accomplish
his course responsibilities (depicted in dashed lines in Fig. 4). The
teacher is not informed by this change and may only be aware of the
original student’s available actions (which is {a1, a2}) and has to design
her decision rule based on this restricted knowledge (see Ad and Aa in
Table 1) 5. Facing this uncertainty, it is easy to see that the linear one
f ′ can guarantee teacher’s maximal utility p, while f can only ensure a
utility of p− ε to the teacher (since in this case, the student will deviate
to invest all effort to action a0), which is smaller than p.
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Figure 4: ε ∈ (0, 1− p) is
the weight parameter.

4 The Complexity for Computing Robust Optimal Decision Rule

Having shown that a robust optimal decision rule f∗ is linear, one may wonder whether it is possible
to efficiently compute such f∗. Note that our analysis for robust optimality is constructive, and it
establishes an algorithmic procedure to compute the optimal f∗. However, we show that computing
f∗ is generally hard.
Theorem 2. We state the computation complexity for computing f∗:

1. Computing the linear f∗ is at least as hard as solving the corresponding strategic decision making
problem without robustness concern (under the linear decision space Glin).

2. In general, computing f∗ is NP-hard since its corresponding strategic decision making problem
without robustness concern (under the linear decision space Glin) is generally NP-hard.
5See our Appendix D.
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3. When X is finite, if there is a polynomial-time algorithm for solving the corresponding strategic
decision making problem without robustness concern (under the linear decision space Glin), then
there is a polynomial-time algorithm for computing f∗.

The proof and the description of a procedure for computing f∗ are included in Appendix E. The key
idea is to first show that we can rephrase the problem of computing f∗ as an optimization problem.
We then show that it can be further decomposed into two optimization problems, with one to be the
same as solving (non-robust) optimal decision rule with strategic behavior (under the linear decision
space Glin), and the other being a linear program with equality constraint.

More formally, let a linear decision rule be in the form of f(α,β) = α>x + β, where (α, β) ∈ Glin (see
Definition 1), we use Strategic-opt to denote the corresponding strategic decision making problem
(under linear decision space Glin) where the agent’s available action set is exactly Ad (matching the
knowledge of the decision maker):

arg max
(α,β)∈Glin

EF [h(x)], s.t. (F, c) ∈ arg max
(F,c)∈Ad

EF [f(α,β)(x)]− c. (Strategic-opt)

Let (F0, c0) ∈ Ad be the solution to the constraint in Strategic-opt. Then according to Lemma 1,
we can compute f∗ by solving:

arg max
(α,β)∈Glin

min
F∈E

EF [h(x)], (Robust-strategic-opt)

s.t. E =
{
F ′ : EF ′ [f(α,β)(x)] = EF0 [f(α,β)(x)]− c0, F

′ ∈ ∆(X )
}
. (7)

Note that different from the problem in Strategic-opt, after identifying the agent’s best response
(F0, c0) ∈ Ad under f(α,β), our problem in Robust-strategic-opt will have an inside layer of
optimization over the set E . It is easy to see that this is a linear programming with equality
constraint, where the decision variables are a probability simplex over X .

min
F∈E

EF [h(x)], s.t. E =
{
F ′ : α>EF ′ [x] = α>EF0 [x]− c0, F

′ ∈ ∆(X )
}
. (E-LP)

Therefore, the computation of Robust-strategic-opt can be decomposed into the computation of
Strategic-opt and a linear program. This decomposition enables us to complete the proof.

5 Discussions and Future Work

Linear models, one of the “white-box” predictive models (contrary to the black-box models such
as neural networks), have several desired properties such as nice generalizability, interpretability,
transparency, and right to recourse. In this work, we further show that it is robust to unknown
strategic manipulations when being used for making decisions. This is another dimension that is worth
taking into account when deciding on which predictive models to deploy. While we also demonstrate
that finding the robust optimal decision rule is generally hard, our analysis in decomposing the
problem could provide some directions in figuring out efficient solvers in special cases.

There are still a number of open questions. In particular, our robustness notion could be overly
pessimistic, considering the worst-case scenario over all possible unknown actions. One natural
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future direction is to explore Bayesian approaches, i.e., incorporating prior beliefs over all possible
agent’s action sets, to model and quantify these uncertainties. Secondly, our work has focused on
dealing with a single agent (or more broadly, a set of homogeneous agents: The decision-maker
knows the common subset of all agents’ available actions). It would be interesting to extend the
discussion to heterogeneous agents or a distribution of agents.
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A Proof for Lemma 1

Proof. Let us first fix an arbitrary action set Aa ⊇ Ad, and an eligible decision rule f , then by (6),
we have that the agent’s utility is at least Va(f |Ad), that is, any action (F, c) the agent would chose
under the decision rule f must satisfy:

EF [f(x)] ≥ EF [f(x)]− c = Va(f |Aa) ≥ Va(f |Ad).

Thus, the decision maker’s utility Vd(f |Aa) = EF [h(x)] is at the least the minimum given by the (4).
This implies the following guarantee of worst-case utility Vd(f):

Vd(f) ≥ min
F∈∆(X )

EF [h(x)] s.t. EF [f(x)] ≥ Va(f |Ad). (8)

We now show that (8) is tight. Let supp(F ) denote the support of distribution F . Let F0 be a
distribution attaining the minimum in (4) and also satisfying the constraint. We consider following
two cases:
Case 1: supp(F0) 6⊂ arg maxx f(x). Then let F1 be a distribution which achieves a higher value of
EF [f(x)]. Let F ′ be a mixture distribution F ′ = (1− ε)F0 + εF1, with a small positive ε. Then we
have EF ′ [f(x)] = (1− ε)EF0 [f(x)] + εEF1 [f(x)] > EF0 [f(x)]. Now take A′a = Ad ∪ {(F ′, 0)}, then
the agent’s unique optimal action under A′a is (F ′, 0). This brings the decision maker with utility of
Vd(f |A′a) = (1− ε)EF0 [h(x)] + εEF1 [h(x)]. Since Vd(f |A′a) ≥ Vd(f), we further have

Vd(f) ≤ Vd(f |A′a) = (1− ε)EF0 [h(x)] + εEF1 [h(x)]. (9)

When ε→ 0, the RHS in (9) will converge to EF0 [h(x)] from above. This implies Vd(f) ≤ EF0 [h(x)]

when ε→ 0. Recall our definition of F0, and together with the lower bound we have shown for Vd(f)

in (8), we can conclude our results in (4) for this case.

Case 2: supp(F0) ⊂ arg maxx f(x). For this case, we discuss following two situations.
(i): EF0 [f(x)] > Va(f |Ad), we now consider action set A′a = Ad ∪ {(F0, 0)}. Since EF0 [f(x)] >

Va(f |Ad), then the agent will uniquely chose action (F0, 0) for f under the action set A′a. This
brings the decision maker with the utility of Vd(f |A′a) = EF0 [h(x)]. Again, with the fact that
Vd(f |A′a) ≥ Vd(f) and the definition of F0, we have now proved (4).
(ii): EF0 [f(x)] = Va(f |Ad) = max f(x), this situation can only be satisfied when Ad contains some
action of the form (F ′, 0) with supp(F ′) ⊂ arg max f(x). Thus, we define

G :=
{

(F ′, 0) ∈ Ad : supp(F ′) ⊂ arg max f(x)
}
6= ∅.

Then, under action set Ad, the agent will choose an action in G which would benefit decision
maker (since we have assumed that when there are multiple optimal actions for agent, agent will
choose the one which maximizes decision maker’s utility.), leading the decision maker’s utility
Vd(f |Ad) = max(F,0)∈G EF [h(x)] ≥ Vd(f). But then the agent would have been willing to choose the
same action under the zero decision rule (and any A ⊇ Ad), leading the decision maker’s utility
Vd(0|A) = max(F,0)∈G EF [h(x)] = Vd(0). This means Vd(0) ≥ Vd(f), which contradicts our eligibility
assumption.
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Without loss of generality, we may assume the agent has a costless action (δx, 0) in Ad.6 Now let
F0 ∈ ∆(X ) attain the minimum in (4). We have EF0 [h(x)] = Vd(f) > 0 by eligibility. On the other
hand, we have h(x) = 0. If we have EF0 [f(x)] > Va(f |Ad) strictly, then replace F0 by a mixture
distribution F ′ = (1− ε)F0 + εδx for small ε. Consider A′a = Ad ∪ {(F ′, 0)}, then the agent’s utility
by taking the action (F ′, 0) is given by Va(f |A′a) = (1− ε)EF0 [f(x)] + εf(x), then one can find a
small ε such that Va(f |A′a) is strictly larger than Va(f |Ad). As a result, this brings the policymaker
with a utility of Vd(f |A′a) = (1− ε)EF0 [h(x)] + εh(x) = (1− ε)EF0 [h(x)]. Since Vd(f |A′a) ≥ Vd(f),
given any positive ε, this implies that Vd(f) ≤ (1− ε)EF0 [h(x)] < EF0 [h(x)], which contradicts the
minimality of F0. Hence we have equality, EF0 [f(x)] = Va(f |Ad), as claimed.

Finally, if F0 ∈ arg maxF∈∆(X ) EF [f(x)], and EF0 [f(x)] = Va(f |Ad), then we have (5).

After finishing the proof, we would like to give following explanation on our construction of worst-case
action set in the proof.
Remark 1. The above proof relies on a construction of agent’s worst case action set by adding
an arbitrary action of the form (F, 0). It may seem unrealistic to allow the agent to arbitrarily
manipulate himself at zero cost. However, we note that the zero cost is not a substantive assumption;
the logic can be carried over to more detailed models that explicitly restrict the effort costs as a
function of expected manipulated feature. Then the equivalent step consists of adding an action to
the action set that produces F at the lowest allowable cost.

B Proof for Lemma 2

Proof. We may assume that the convex hull of X is a full-dimensional set in Rn. Now fix any
nonlinear decision rule f , our proof will hinge on the discussion of two cases we have shown in
Lemma 1.
Case 1. We first define

t(x) = max{Va(f |Ad), h(x) + f(x)− Vd(f)}.
Now we define two sets in Rn+1 = Rn×R: Let S be the convex hull of all pairs (x, f(x)), for x ∈ X ,
let T be the convex hull of all pairs (x, z) that x lies in the convex hull of X , and z > t(x). We note
that T is then a convex set.

We now claim that S and T are disjoint. To see this, let’s suppose S and T are not disjoint, then
there exists a distribution F ∈ ∆(X ) such that EF [f(x)] > EF [t(x)]. In particular, we have

EF [f(x)] > Va(f |Ad),
and also

EF [f(x)] > EF [h(x)] + EF [f(x)]− Vd(f)

⇒ Vd(f) > EF [h(x)].

6This assumption is a purely additive normalization of the decision maker’s utility and it can be relaxed (see our
discussion at the end of the section B). Our results will not require this assumption. Other works also make similar
assumption (Carroll, 2015; Dütting et al., 2019): The agent can always exert no effort, namely, the zero-cost action, to
produce a minimum output (denote by 0); this corresponds to assuming (δ0, 0) ∈ Ad.
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This is a direct contradiction to our statement of (4) in Lemma 1.

The disjointness and convexity of S and T enable us to apply the separating hyperplane theorem:
There exists a vector λ = (λ1, . . . , λn) and constants µ, v such that∑

i

λixi + µz ≤ v, ∀(x, z) ∈ S (10)∑
i

λixi + µz ≥ v, ∀(x, z) ∈ T (11)

and λ is a non-zero vector. Note that (10) and (11) implies µ ≥ 0. To see this, fix a point x ∈ X ,
then for (x, z) ∈ S and (x, z′) ∈ T we have∑

i

λixi + µz′ ≥
∑
i

λixi + µz ⇒ µz′ ≥ µz,

by earlier argument on the disjointness of S and T , we can conclude that µ ≥ 0. We now also show
that µ is a positive constant. Suppose µ = 0, then (10) gives

∑
i λixi ≤ v and (11) gives

∑
i λixi ≥ v,

which leads to
∑

i λixi = v. Since not all λi are zero, this contradicts the full-dimensionality of X .

Now we can rewrite (10) as following

f(x) ≤ v −∑i λixi
µ

, ∀x ∈ X

This motivates us to define following linear decision rule

f ′(x) =
v −∑i λixi

µ
, ∀x ∈ X . (12)

Note that we have f ′(x) ≥ f(x) pointwise.

Now we are ready to check that Vd(f ′) ≥ Vd(f). Let (F0, c0) be the action that the agent would like
to choose under f and action set Ad. Consider any action set Aa ⊇ Ad, as we have shown before,
we must have

Va(f
′|Aa) ≥ Va(f ′|Ad) ≥ Va(f |Ad). (13)

Let (F, c) be the action that the agent chooses under f ′ and action set Aa. Then (11) implies

EF [t(x)] ≥ v −∑i λiEF [xi]

µ

= EF [f ′(x)] (14)

= Va(f
′|Aa) + c

≥ Va(f ′|Aa) (c ∈ R+)

≥ Va(f |Ad). (by (13))

It is worthy noting that if above inequality is strict, then according to our definition of t(x), we must
have

EF [t(x)] = EF [h(x)] + EF [f(x)]− Vd(f). (15)
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So we have

Vd(f
′|Aa) = EF [h(x)] = EF [t(x)]− EF [f(x)] + Vd(f)

≥ EF [t(x)]− EF [f ′(x)] + Vd(f) (by definition of f ′)

≥ Vd(f). (by 14)

On the other hand, if EF [t(x)] = Va(f |Ad). This implies all the inequalities in the stacked chain
above are equalities. In particular, we will have

Va(f
′|Aa) = Va(f

′|Ad) = Va(f |Ad).
Since the agent now does at least as well as Va(f |Ad) by taking action (F0, c0), this action is in his
choice set under f ′ and Aa, as a result, the decision maker gets at least the corresponding utility:
Vd(f

′|Aa) ≥ EF0 [h(x)] = Vd(f |Ad) ≥ Vd(f), where the first inequality is due to the tie-breaking
assumption of the agent (when there are multiple maximizers, the agent will chose the most beneficial
one for the decision maker).

Thus, in either case, we have Vd(f ′|Aa) ≥ Vd(f), this holds for any Aa ⊇ Ad, thus we have
Vd(f

′) ≥ Vd(f).

Case 2. In this case, we define S to be the convex hull of all pairs (x, f(x)), and T to be the set
of all (x, z) with x in the convex hull of X and z > Va(f |Ad). We still claim both of S and T are
convex, and disjoint: otherwise, there exists F such that

EF [f(x)] > Va(f |Ad).
This contradicts our statement (5) in Lemma 1. Using the same arguments as in case 1, we find a
vector λ = (λ1, . . . , λn) and constants µ, v such that (10) and (11) hold, and we can still guarantee
that µ > 0. Again, we define a linear decision rule f ′ by (12); from (10) we know that f ′ ≥ f

pointwise. Consider the agent’s behavior under decision rule f ′, for any action (F, c) chosen by the
agent under any possible action set, we have

EF [f ′(x)]− c = f ′(EF [x])− c ≤ Va(f |Ad). (by (11))

This means that the agent cannot earn a higher expected utility than Va(f |Ad). On the other hand,
the agent can always earn at least this much, since Va(f ′|Aa) ≥ Va(f ′|Ad) ≥ Va(f |Ad). This means
we have equality Va(f ′|Aa) = Va(f

′|Ad) = Va(f |Ad). From here, the argument finishes just as at
the end of case 1, and we have Vd(f ′) ≥ Vd(f).

Extensions: General cost lower bounds As mentioned in Remark 1, our analysis relies on the
construction of worst case action sets, using actions, that produce an undesirable distribution F , at
costs of zero. This zero-cost action assumption (together with the assumption in Footnote 6) is not
substantial and one natural relaxation is that the decision maker knows a lower bound on the cost of
any available actions, or of producing any given level of expected output. Our analysis and results will
go through for this scenario. Specifically, suppose the known lower bound cost is denoted by c > 0,
then our Lemma 1 can be accordingly changed to: Vd(f) = minF∈∆(X ) EF [h(x)], s.t. EF [f(x)]− c ≥
Va(f |Ad) or maxF∈∆(X ) EF [f(x)]− c = Va(f |Ad). To get the analogous result in Lemma 2, one can
change the function t(x) as t(x) = max{Va(f |Ad) + c, h(x) + f(x)− Vd(f)}, then all the analysis
can be carried over here.
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C Proof for Lemma 3

Proof. We prove Theorem 1 via showing the existence of an optimum within the class of linear
decision rules, and this decision rule will then be optimal among all decision rules. Note that
for any eligible decision rule f(x), the value of f(x) that it assigns to x is bounded within [0, C̄].
Let a linear decision rule be the form of f(α,β)(x) = α>x + β. Then it suffices to show that the
guaranteed worst-case utility Vd(f) is an upper semi-continuous function of (α, β) ∈ Glin. Now fix a
sequence (α1, β1), (α2, β2), . . . in Glin converging to some (α∞, β∞) in Glin. Then it suffices to show
that Vd(f(α∞,β∞)) ≥ lim supk Vd(f(αk,βk)). To prove this, first note that by replacing the sequence
((αk, βk)) with a subsequence along which Vd(f((αk, βk))) converges to its lim sup on the original
sequence, thus, we can assume that Vd(f(αk,βk)) converges to lim supk Vd(f(αk,βk)). Now for any
action set Aa, and let (F k, ck) be the agent’s chosen action under Aa and the decision rule f(αk,βk).
Then if necessary, by extracting a further subsequence, we can assume that the sequence (F k, ck)

converges to some (F∞, c∞) ∈ Aa. Since the agents’ utility are continuous in (α, β), then (F∞, c∞)

is an optimal action for the agent under f(α∞,β∞), and its utility to the decision maker is the limit
of the corresponding utility of (F k, ck) under f(αk,βk). We thus have

Vd(f(α∞,β∞)|Aa) ≥ EF∞ [h(x)] = lim
k

EFk [h(x)] = lim
k
Vd(f(αk,βk)|Aa) ≥ lim

k
Vd(f(αk,βk)).

Since Aa ⊇ Ad is arbitrary, then we have Vd(f(α∞,β∞)) ≥ limk Vd(f(αk,βk)).

D Missing Table in Section 3.4

Given the student’s efforts e invested to each action, we can enumerate all possible induced
distributions over X in Ad and Aa (see Table 1). Note that since the student can now also invest
efforts to action a0, Aa contains more availabilities compared to Ad.

x = (x1, x2) F in Ad F in Aa
P(x = (1, 1)) e1p

2 (e1p+ (p− ε)e0)(p+ εe0)

P(x = (1, 0)) e1p(1− p) (e1p+ (p− ε)e0)(1− p− εe0)

P(x = (0, 1)) (1− e1p)p (1− e1p− (p− ε)e0)(p+ εe0)

P(x = (0, 0)) (1− e1p)(1− p) (1− e1p− (p− ε)e0)(1− p− εe0)

Table 1: All possible distributions F Ad and Aa induced by student’s effort e = (e0, e1, 1− e0 − e1).
e1, e0 are the efforts decided by the student for actions a1 and a0 where e1 + e0 ∈ [0, 1].

E Missing proof and the Algorithm for Theorem 2

Proof. According to case (i) in Lemma 1, given f(α,β), for any distribution F attaining the minimum
in (4), we know that the inequality in Γ must bind at F . Let (F0, c0) ∈ Ad be the solution to the
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Algorithm 1 Find the optimal robust decision rule

1: Input: Decision maker’s knowledge Ad, linear decision space Glin, objective function h.
2: Initial f∗ ∈ F lin arbitrarily and Vd(f∗) = 0.
3: for every (α, β) ∈ Glin do
4: Let (F0, c0) ∈ arg max(F,c)∈Ad

EF
[
α>x + β

]
− c;

5: Solve the set E =
{
F : α> (EF0 [x]− EF [x]) = c0, F ∈ ∆(X )

}
;

6: Compute Vd
(
f(α,β)

)
= minF∈E EF [h(x)];

7: if Vd
(
f(α,β)

)
> Vd(f

∗) then
8: f∗ ← α>x + β.
9: end if

10: end for
11: Output Robust optimal decision: f∗.

constraint in Strategic-opt. Then we can compute f∗ by solving:

arg max
(α,β)∈Glin

min
F∈E

EF [h(x)], (Robust-strategic-opt)

s.t. E =
{
F ′ : EF ′ [f(α,β)(x)] = EF0 [f(α,β)(x)]− c0, F

′ ∈ ∆(X )
}
, (16)

where we refer to the set E , as the worst-action set, since we choose the worst action among it to
minimize the expected utility EF [h(x)]. Different from the problem in Strategic-opt, after identi-
fying the agent’s best response (F0, c0) ∈ Ad under f(α,β), our problem in Robust-strategic-opt
first turns to characterizing a worst-action set E . Then the searching of f∗ will hinge on maximizing
EF [h(x)] in each E over Glin. This implies that to make our problem tractable, one may first need to
guarantee the corresponding strategic decision-making problem tractable. Furthermore, given a linear
f(α,β), the additional computational complexity in Robust-strategic-opt is due to the robustness
concern in minimizing EF [h(x)] over set E . It is easy to see that this is a linear programming with
equality constraint, where the decision variables are a probability simplex over X .

min
F∈E

EF [h(x)], s.t. E =
{
F ′ : α>EF ′ [x] = α>EF0 [x]− c0, F

′ ∈ ∆(X )
}
. (E-LP)

Inside the optimization, for every (α, β) ∈ Glin, our problem Robust-strategic-opt has one more
induced Linear programming E-LP to solve compared with the standard problem Strategic-opt.

As it will in general be hard to optimize arbitrary non-concave functions, we may consider assuming
a concave h. However, as pointed out by other studies (Kleinberg and Raghavan, 2019; Alon et al.,
2020), there exist concave functions h that are NP-hard to solve the problem Strategic-opt (via
a reduction from the maximum independent set problem), which naturally leads the hardness of
our problem. In particular, back to our student evaluation setting, let F (e) be the induced feature
distribution if the agent’s effort profile is e. As a result, the decision maker’s goal on maximizing h(x)

can be reduced to maximizing h(F (e)). When h(F (e)) = ‖e‖0, solving the problem Strategic-opt
is then NP-hard.
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