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Abstract

We study a multi-armed bandit learning setting where a social planner incentivizes a
set of heterogeneous agents to efficiently explore the set of available arms. At each
round, an agent arrives with their unobserved private type that determines both their
prior preferences across the actions as well as their action-independent confounding
shift in the rewards. The planner provides the agent with an arm recommendation
that may alter their belief and incentivize them to explore potentially sub-optimal
arms. Under this setting, we provide a novel recommendation mechanism that
views the planner’s recommendations as a form of instrumental variables (IV) that
only affect agents’ arm selection but not the observed rewards. We construct such
IVs by carefully mapping the history–the interactions between the planner and
the previous agents–to a random arm recommendation. Despite the unobserved
confounding shift in the rewards, the resulting IV regression provides reliable
estimates on the mean rewards of the actions and enables the social learning
process to minimize regret over the long term.

1 Introduction

In many online recommendation systems, including Netflix, Amazon, Yelp, Stubhub, and Waze,
users are both consumers and producers of information. Users make their selections based on
recommendations from the system, and the system collects data about the users’ experiences to
provide better-quality recommendations for future users. To ensure the quality of its recommendations,
the system typically needs to balance between exploration—selecting potentially suboptimal options
for the sake of acquiring new information—and exploitation—selecting the best option given the
available information. However, there is an inherent tension between exploration and the users’
incentives—since each user is primarily concerned with their short-term utility, their incentives
naturally favor exploitation.

To resolve this tension between exploration and incentives, a long line of work started by Kremer et al.
[2013], Mansour et al. [2015] has studied mechanisms that incentivize users to explore by leveraging
the information asymmetry between the recommendation system and users [Mansour et al., 2016,
Immorlica et al., 2019, Sellke and Slivkins, 2020]. These papers consider a simple multi-armed
bandit model, where the recommendation system is a social planner who interacts with a sequence of
self-interested agents. The agents arrive one by one to choose from a given set of alternatives (or
called actions or arms) and receive a reward for their choice. Upon the arrival of each agent, the social
planner provides a recommendation (one of the alternatives) that influences the agent’s selection. The
problem is to design a recommendation policy that incentivizes the agents to perform exploration and
in the long run maximize the cumulative rewards of all the agents.

Prior work on "incentivizing exploration" typically approaches the problem by enforcing Bayesian
incentive-compatibility (BIC) for every agent—that is, it is in each agent’s interest to follow the
planner’s recommendation even if such action is inferior according to their prior belief. To achieve
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BIC, these mechanisms typically need to assume a strong assumption that all of the agents and the
planner share a common prior over the rewards of actions. However, in reality, agents tend to be
inherently heterogeneous in terms of their beliefs and perceived rewards. In particular, some agents
can have a stronger bias that favors one action over others and different agents. Moreover, even if the
actions have the same effects on all of the agents, their realized or observed utilities can be different.
For example, different patients taking the same drug may report levels of pain and different drivers
taking the same route may have different commute time.

To explicitly capture the underlying heterogeneity across agents, we study a new model in which
each agent has unobserved private type that determines both their prior preferences across the
actions and their action-independent confounding shift in the rewards. Since the heteroneneity of the
agents confounds the observed rewards, we draw techniques from instrumental variable regression to
estimate the reward effects across the actions. In particular, we take a novel view that the planner’s
recommendations can serve as a form of instrumental variables (IV) that only affect agents’ arm
selection but not the observed rewards. We construct such IVs by carefully mapping the history–the
interactions between the planner and the previous agents to a random recommendation. By running
IV regression, our mechanism obtains a reliable estimate of reward effect of each action and in turn
incentivize the agents’ selections to converge on the optimal action.

A major advantage of our IV-based mechanism is that we no longer need to enforce BIC for all agents.
Our algorithm can estimate the action effects accurately, as long as the recommendations induce
variability in the agents’ selections. An important special case is when a fraction of the types are more
willing to explore an action that a-priori inferior. Furthermore, as soon as the mechanism obtains
a sufficiently accurate estimate on the action effects, the policy can then be BIC for the remaining
types. We demonstrate such partially BIC policy can significantly improve the regret bounds of a
fully BIC policy obtained by extending the algorithm of Mansour et al. [2015] to our setting.

Organization. In this workshop version, we will present our formal model (Sec.2) and illustrate key
ideas of our mechanism in a simple setting of two private types and two arms (Sec. 3). We defer the
fully general results and details to the full version.

2 Model

We study a sequential game between a social planner and a sequence of agents over T rounds,
where T is known to the social planner. There is a set X of k possible actions for each agent to
choose from. In each round t, an entirely new agent indexed by t arrives with their private type ut
drawn independently from a distribution U . Each agent t receives an action recommendation zt ∈ X
from the planner and then selects an action Xt in X and receives a reward yt ∈ R.

Reward Given the choice of Xt ∈ X , the reward yt for each agent t is given by

yt = θXt + g(ut) + εt (1)

where θa denotes the exogenous mean rewards for each action a ∈ X , g(ut) is a confounding term
that depends on the agent’s private type ut, and εt denotes the random reward noise with a subgaussian
norm of σε and conditional expectation E[εt | Xt, ut] = 0. We assume that for all rounds t, the
treatment reward θXt ∈ [0, 1] and the confounding term |g(ut)| ≤ Υ for some constant Υ. Both
g(ut) and εt are unobserved. The social planner’s objective is to maximize the total reward of all
agents over all T rounds. The agents are self-interested individuals whose objective is to maximize
their own expected reward.

History and recommendation policy The interaction between the planner and the agent t is given
by the tuple (zt, Xt, yt). For each t, let Ht denote the history from round 1 to t, that is the sequence
of interactions between the social planner and first t agents: ((z1, X1, y1), . . . , (zt, Xt, yt)). Before
the game starts, the social planner commits to a recommendation policy π = (πt)

T
t=1 where each

πt : (X ×X ×R)t−1 → ∆(X ) is a randomized mapping from the historyHt−1 to a recommendation
zt. The policy π is fully known to the agents.

Beliefs, incentives, and action choice Each agent t knows their place t in the sequential game. As
part of their private type ut, each agent t has a prior belief distribution Pt, which is a joint distribution
over the mean reward vector θ, the agents’ private types, and their reward noise. In round t, the action
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Xt chosen is given by a selection function f(ut, zt, t) = Xt. Each agent chooses an action Xt that
maximizes their Bayesian expected reward conditional on the recommendation zt. We can define
how action Xt is chosen by the selection function f as such:

Xt = f(ut, zt, t) := argmax
a

E
θa∼Pt

[θa | zt, t] (2)

We say that the recommendation is Bayesian incentive compatible (BIC) for agent t if Xt = zt.

Regret We consider the following notions of regret that measure the ability of the algorithm to
maximize the expected total reward of all agents. For the following definitions, let θa

∗
= maxa θ

a.
The regret of the mechanism is

Rθ(T ) = Tθa
∗
− E

[
T∑
t=1

θXt
t

∣∣θ] . (3)

The regret accumulated by agents of type π is then defined as

Rπθ (T ) = E

[
T∑
t=1

(
θa
∗
− θXt

t

)
1[ut = π]

∣∣θ] . (4)

2.1 Recommendations as Instruments

We model the reward yt and action Xt in the presence of confounding variables that depend on the
type ut. In a standard bandits setting, without confounding variables, one would find θa

∗
by taking

average over sufficiently many observed rewards of each arm. However, because of the unknown
confounding variable g(ut) that is correlated with Xt, such simple estimation does not work. Instead,
we will use instrumental variable (IV) regression to estimate the exogenous mean reward vector θ.
Note that each recommendation zt can be viewed an instrumental variable because (1) zt influences
the selection Xt, and (2) zt is independent from the endogenous error term g(ut). Criterion (2)
follows because planner chooses zt randomly independent of the type ut.

Our mechanism periodically solves the following IV regression problem: given a set of n observations
{(Xi, yi, zi)}ni=1, find an accurate estimate of θ̂n. To derive the estimator, we will rewrite the selection
and reward functions in (1) and (2) as a linear relationship between Xi, yi and zi. We denote each
action a in X with a standard basis vector ea ∈ {0, 1}k with 1 at the a-th coordinate. Then

yi = 〈θ,Xi〉+ g(ui) + εi (5)
Xi = Γᵀzi + ηi (6)

where ηi = EU [X | zi]−Xi and Γ is k × k compliance matrix such that each ab-th entry given by:

(Γ)ab = P
U

[Xt = eb|zt = ea] (7)

Two-Stage IV estimator. We estimate θ via a generalization of Two-Stage Least Squares regression.
We first form an empirical estimate of Γ, denoted Γ̂n, wherein the ab-th entry is given by:(

Γ̂n

)
ab

=
1

na

n∑
i=1

1[Xi = eb ∧ zi = ea] (8)

where na denotes the number of times that arm a is recommended: na =
∑n
i=1 1[zi = ea].

In the second stage, let β = Γ̂nθ and β∗ = (β,E[g(u)]) be the augmented vector created by adding a
coordinate of g(ut) to β and let z̃i = (zi, 1) be the augmented vector created by adding a coordinate
of 1 to zi. Note that we have E[yi | zi] = 〈β∗, z̃i〉, and so we can form a ridge regression estimate of
β∗, denoted β̃:

β̃ =

(
n∑
i=1

z̃iz̃
ᵀ
i + λI

)−1( n∑
i=1

z̃iyi

)
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Let β̂n be such that β̃ = (β̂n, Ê[g(u)]) where Ê[g(u)] is the estimate of E[g(u)] and β̂n is the estimate
of β. Finally, our IV estimate is given by

θ̂n = (Γ̂n)−1β̂n.

We provide a finite-sample error bound on θ̂n, which may be of independent interest.

Theorem 2.1. Given n observations {(zi, Xi, yi)}ni=1 generated from (5) and (6), where each ui is
drawn independently from a private type distribution U . Let nmin := minj nj = minj

∑n
i=1 1[zi =

ej ] be the minimum number of times any arm is recommended and σmin{Γ̂n} be the minimum
singular value of the empirical compliance matrix Γ̂n. Suppose nmin > 0, then with probability at
least 1− δ:

∥∥∥θ̂n − θ∥∥∥
2
≤

√
λ(k + Υ2) + 2

√
2 log

(
2
δ

)
+ (k + 1) log

(
1 + 2n

λ(k+1)

)
σmin{Γ̂n}

√
nmin

.

Remark 2.2 (Lower bound on σmin(Γ̂n)). Suppose among the n observations p̂ is the proportion of
agents that follow our recommendations. Then with probability at least 1− δ, the minimum singular
value of the empirical compliance matrix satisfies σmin(Γ̂n) ≥ p̂2/2.

3 Warmup: two arms and two types

In this section, we provide a concrete example to demonstrate how our algorithm works. We consider
a simple setting which entails only two arms and two types. Each type has a different Bayesian prior
over the rewards of these two arms, but both types agree on which arm is better than the other.

At a high level, our algorithm follows the structure of the BIC mechanism of Mansour et al. [2015]
with two key modifications. In particular, our algorithm is no longer required to be BIC for all agents.
As a result, it can obtain a better regret bound whenever one of the types is more compliant. Also, our
mechanism estimates the action effects θ with IV regression. Our algorithm runs in two stages: first,
the sampling stage and then the racing stage. The sampling stage sub-algorithm collects L1 samples
of each arm. These L1 samples are then input as a parameter into the racing stage algorithm, which
recommends each arm one-by-one until one arm “wins.” We design the algorithm to incentivize one
type to be compliant throughout. We are able to do so because we employ an instrumental variable
(IV) regression in order to estimate the true treatment effect of each arm. Because we require only
partial incentive-compatibility, our algorithm achieves better regret than a fully BIC algorithm similar
to that of the detail-free algorithm in Mansour et al. [2015] would.

This section is organized as follows: Section 3.1 lays out the background assumptions for this
two-arm two-type setting. Section 3.2 outlines assumptions needed for the sampling stage algorithm,
demonstrates said algorithm in Algorithm 1, and proves that it is BIC for one type in Lemma 3.2.
Section 3.3 also notes assumptions needed for the racing stage, demonstrates the racing stage
algorithm (Algorithm 2), and proves incentive-compatibility first for one type, then later for both.
Finally, Section 3.4 states the overall expected regret and the type-specific regrets for our algorithm
in Lemmas 3.5, 3.6, and 3.7. In Remark 3.9, we demonstrate the advantage of our algorithm by
comparing the type-specific regret of our algorithm to that of a fully BIC algorithm.

3.1 Setting Assumptions

Before we present the algorithm, we present our background assumptions.

Assumption 3.1. The entire population of agents has two types, i.e. type 1 and type 2. The
proportions of agents of either type in the population are equal. Each type i has a Bayesian prior,
namely Pi, over the distribution of the mean reward vector θ. For each type i, the prior mean reward
of arm a is given by µai := EPi [θ

a]. We assume that the arms are ordered according to their prior
mean rewards and that this ordering is shared across types, i.e. µ1

i > µ2
i for either type i ∈ {1, 2}.

If agents were left to their own devices, we would only see samples of arm 1, since all agents prefer
arm 1 to arm 2. Thus, we need to incentivize agents to choose arm 2 via our recommendations.
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3.2 Sampling Stage Algorithm for Two Arms and Two Types

Following the two-arm fully BIC sampling stage algorithm in Mansour et al. [2015], Algorithm 1
capitalizes on an information asymmetry between the agents and the social planner in order to
incentivize the agents to comply to the its recommendations. However, while the fully BIC sampling
stage is BIC for all agents at all rounds, Algorithm 1 is designed to be BIC for agents of a given type
i.1 In our partially BIC algorithm, we implement Algorithm 1 to be BIC for agents of type 2, because
these agents are easier to convince to be BIC under our recommendation policy than are agents of
type 1. In Section 3.4, we demonstrate how implementing a partially BIC algorithm which is BIC for
only agents of a single type allows for improvements in regret over a fully-BIC algorithm which is
BIC for agents of all types.

In the first phase of Algorithm 1, we recommend only arm 1: this recommendation confers no
information about the history and each agent chooses the better arm according to their prior, i.e. arm
1. Thus, we observe the rewards from L1 samples of arm 1. For a given type i, there is a non-zero
chance that arm 1 performs so poorly that the prior of arm 2 looks better than the posterior of arm 1
conditioned on these L1 samples. For type i, define this event as

ξi =

 1

L1

L1∑
t=1

y1
t +

1

2
+ Υ + σε

√
2 log(1/δ)

L1
< µ2

i

 , (9)

where δ is a sampling failure probability to be determined.

Starting in the second phase of the sampling stage, we recommend either an arm to exploit or an arm
to explore. If event ξi occurs, the algorithm always recommends arm 2 to exploit. The algorithm
also explores by recommending arm 2 to L1 agents (out of ρL1 in total, where 1/ρ represents the
exploration probability). Thus, when any agent receives a recommendation for arm 2, there is a
chance that it is because ξi occurred and there is a chance that it is because the algorithm chose them
to explore on. If the exploration probability is small enough (i.e. ρ is large enough), then agents of
type i are always inclined to follow a recommendation for arm 2.

We order the two types such that agents of type 1 require a smaller exploration probability than agents
of type 2. As such, we implement Algorithm 1 to be BIC for only agents of type 2.

We use a set of assumptions to limit the prior to ensure that our algorithm has a chance to recommend
the weaker arm and that our estimates are close to the true treatment effects. Hence, we restrict the
priors to be independent across arms, with bounded treatment effects and confounder.

Algorithm 1: The sampling stage for two arms with two heterogeneous types
Input: parameters ρ, L1 ∈ N
In the first L1 rounds, let the agents pick their preferred arm (arm 1). The sample average of reward
y1 after pulling arm 1 L1 times is ȳ1

L1
.

if µ2
2 > ȳ1

L1
+

1

2
+ Υ + σε

√
2 log(1/δ)

L1
then

a∗ = 2
else

a∗ = 1
end
From the set P of the next L1.ρ agents, pick a set Q of L1 agents uniformly at random.
Every agent t ∈ P −Q is recommended arm a∗.
Every agent t ∈ Q is recommended arm 2.

We prove that the algorithm 1 is BIC for agents of type i as long as the number of phases ρ is larger
than some prior-dependent constant. The intuition is when an agent of type i is recommended arm
2, they do not know whether this is due to exploration or exploitation. However, with large enough
number of phases ρ, the exploration probability 1/ρ is low enough that the expected gain from
exploiting exceed the expected loss from exploring and the agent would take arm 2.

1Mansour et al. [2015] does not explicitly consider agents of heterogeneous types. However, we consider an
extension of their algorithm in our setting as an algorithm that is BIC for agents of all types at all rounds.
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Lemma 3.2 (Two Arm Sampling Stage BIC for Type i). Algorithm 1 with parameters (ρ, L1)
completes in L1ρ+ L1 rounds. Algorithm 1 is BIC for all agents of type i if we hold Assumption 3.1
above and the parameters satisfy:

ρ ≥ 1 +
4(µ1

2 − µ2
2)

PPi [ξi]
. (10)

3.3 Racing Stage Algorithm for Two Arms and Two Types

From the sampling stage, we get a set of observations for L1ρ+ L1 rounds. Because, as shown in
Lemma 3.2, agents of type 2 will always follow our recommendation, this allows us to induce vari-
ability among the action choices of type 2 agents and get samples of arm 2. This allows the empirical
compliance matrix Γ̂ to have all positive singular values. Thus, we can use our recommendations as
instruments and regress over them (using IV regression) to estimate the exogenous mean rewards θ̂1

and θ̂2.

In the racing stage (Algorithm 2), each arm will be recommended one-by-one until one of them can
be determined to be optimal with high confidence. After that, the racing stage has ended the “winner”
arm is recommended for the rest of the time horizon. Thus, when an agent gets a recommendation
for arm 2, they are not sure whether they are receiving that recommendation because they are still
in the racing stage or because it has ended and arm 2 has won. We will leverage this uncertainty to
incentivize them to follow the recommendations.

By collecting more samples, we are able to form good enough estimates θ̂1 and θ̂2 and increase the
likelihood that the racing stage has ended when an agent receives a recommendation for arm 2. Thus,
we collect a sufficient number of samples in the sampling stage in order to make the racing stage
algorithm BIC for agents of type 2. By similar reasoning as the recommendation in the sampling
stage, we can treat the recommendation in the racing stage as an instrument because agents of type
2. We use all L1 samples from the sampling stage and any additional samples in the racing stage in
order to estimate the mean rewards θ̂1 and θ̂2.

Similar to the sampling stage, we also rely on agents of type 2 to take our arm 2 recommendation in
the beginning of the racing stage. Hence, to account for the probability of agent of type 2 getting an
arm 2 recommendation, we divide the racing stage into phases of 2h rounds each, where each arm is
recommended h times in a phase.

After each phase, we check if the empirical gap |θ̂1 − θ̂2| is larger than some threshold. If that
happens, the arm with the higher estimate is determined with high probability to be the best arm, and
all agents are only recommended this arm from now on. To ensure that the winner of the racing stage
is indeed the best arm with high probability, we need to pick a threshold large enough, similar to the
termination condition in the Active Arm Elimination algorithm from Even-Dar et al. [2006].

We also divide the racing stage into two smaller sub-algorithms. The first part of the racing stage is
partially BIC, where we guarantee that only agents of type 2 will comply with our recommendations.
After collecting sufficient samples of arm 2, if the algorithm has not found the “winner” yet, we can
proceed to the second part of the racing stage. At this point, we have collected enough samples to also
convince agents of type 1 to follow our recommendations. By having two consecutive racing stages,
we can potentially reduce the regret of our algorithm and achieve a fully BIC algorithm, where every
agent follows our recommendations.

We prove that the Algorithm 2 is BIC for all agents of type 2 as long as we have collected sufficient
samples of arm 2 in the sampling stage and our estimate of θ is close to the true treatment effect. Due
to information asymmetry, when an agent is recommended arm 2, they do not know whether the two
arms are still racing each other or if the best arm has been found. However, with a small enough
threshold, the expected gain from exploiting the best arm exceeds the expected loss from exploring a
random arm and the agents of type 2 would follow our recommendation.
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Algorithm 2: The racing stage for two arms with two heterogeneous types
Input: parameters L1 ∈ N; time horizon T ; probability δ, number of recommendations h for a

single arm in a single phase
Input: IV estimates of mean reward θ1 and θ2, denoted θ̂1

L1
and θ̂2

L1

Let θ̂1
L1

and θ̂2
L1

be the IV estimate of the mean reward θ1 and θ2 after L1ρ rounds of Algorithm 1;
Split remainder into consecutive phases of 2h rounds each, starting from phase q = L1;
while L1 <

589824(log(3T/δ)+3 log(2T (2+Υ2)))
τ2(PP1

[G≥τ ]2) do

while |θ̂1
q − θ̂2

q | ≤ 192
√

log(3T/δ)+3 log(2T (2+Υ2))
q do

The next 2h agents are recommended both arms sequentially;
For each arm a ∈ {1, 2}, let yat be one sample reward of that arm in this phase;
Let θ̂aq is the IV estimate of the reward of each arm a ∈ {1, 2} for the racing stage up to and
including phase q;
q = q + 1;

end
For all remaining agents recommend a∗ = argmaxa∈{1,2} θ̂

a
q and end the algorithm.

end

while |θ̂1
q − θ̂2

q | ≤ 192
√

log(3T/δ)+3 log(2T (2+Υ2))
q do

The next 2h agents are recommended both arms sequentially;
For each arm a ∈ {1, 2}, let yaq be one sample reward of that arm in this phase;
Let θ̂aq is the IV estimate of the reward of each arm a ∈ {1, 2} for the racing stage up to and
including phase q;
q = q + 1;

end
For all remaining agents recommend a∗ = argmaxa∈{1,2} θ̂

a
q

Lemma 3.3 (Type 2 BIC). Let G := θ2 − θ1. Fix an absolute constant τ ∈ (0, 1) and let

δτ =
1

4

τ PP2
[G ≥ τ ]

τ PP2 [G ≥ τ ] + 1
.

Algorithm 2 is BIC for all agents of type 2 if the parameters satisfy δ ≤ δτ and

h ≥ −
log
(

3τ PP2
[G≥τ ]+4

4τ PP2
[G≥τ ]+4

)
log(2)

and

L1 ≥
589824(log(3T/δ) + 3 log(2T (2 + Υ2)))

τ2(PP2
[G ≥ τ ]2)

.

During the first racing stage, we collect more samples of arm 2 through agents of type 2. After getting
sufficient samples of arm 2, we can also convince agents of type 1 to follow our recommendations for
arm 2. The following Lemma 3.4, which follows the same structure as that of Lemma 3.3, proves
that the second racing stage algorithm is BIC for both agents of type 1 and type 2.

Lemma 3.4 (Type 1 BIC). Assume two arms. Let G := θ2 − θ1. Fix an absolute constant τ ∈ (0, 1)
and let

δτ =
1

2

τ PP1
[G ≥ τ ]

τ PP1 [G ≥ τ ] + 1
.

Algorithm 2 is BIC for type 1 in the second part of the racing stage if the parameters satisfy δ ≤ δτ
and

L1 ≥
589824(log(3T/δ) + 3 log(2T (2 + Υ2)))

τ2(PP1 [G ≥ τ ]2)
.
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3.4 Regret Analysis

With the number of samples of each arm collected in the sampling stage L1, the number of sampling
stage phases ρ and the accuracy guarantee of our estimate δ, our sampling stage and racing stage
algorithms achieve sub-linear regret for a particular instance of the treatment effect vector θ. Since
the priors are not exactly known to the social planner, this ex-post regret is correct for any realization
of the priors and treatment effect vector θ.
Lemma 3.5 (Regret). Algorithm 1 and 2 with parameters L1, ρ ∈ N and δ ∈ (0, 1) achieves ex-post
regret:

R(T ) ≤ L1(ρ+ 1) +O(
√
T log(T/δ)) (11)

where ∆ = |θ1 − θ2|, L1 is the duration of one phase in the initial sampling stage and 1
ρ is the

exploration probability in the sampling stage.

With the number of samples of each arm collected in the sampling stage L1, the number of sampling
stage phases ρ, and the accuracy guarantee of our estimate δ, our sampling stage and racing stage
algorithms achieve sub-linear Bayesian regret over the randomness in the priors of the agents. Lemma
3.6 provides a basic performance guarantee of our algorithm.
Lemma 3.6 (Expected Regret). Algorithm with parameters L1.ρ ∈ N and δ ∈ (0, 1) achieves
expected ex-post regret.

E[R(T )] = O
(√

T log(T )
)

(12)

where T is the time horizon.

From the regret analyzed in Lemma 3.5, we can derive the type-specific regret of each type of agent.
Since our algorithm does not guarantee that all agents follow our recommendations in the sampling
stage and the first racing stage, the type-specific regret is divided into two cases, depending on the
best arm overall. In addition to the regret in Lemma 3.5, this regret also depends on the proportion of
each type of agents in the population, which consider to be equal between the two types. Lemma 3.7
below demonstrates our type-specific regrets guarantee.
Lemma 3.7 (Type-specific regret of a partially BIC algorithm). The following type-specific expected
regret bounds in Table 1 hold.

Best arm/Type Type-specific Regret
Arm 1: Type 1 O(log(T/δ))

Arm 1: Type 2 O
(

log(T/δ)
τ2 PP2

[G≥τ ]2

)
+O(log(T/δ))

Arm 2: Type 1 O
(

log(T/δ)
τ2 PP2

[G≥τ ]2

)
+O(

√
T log(T/δ))

Arm 2: Type 2 O
(

log(T/δ)
τ2 PP2

[G≥τ ]2

)
+O(

√
T log(T/δ))

Table 1: Type-Specific Regret for Two Arms & Two Types with partially BIC Algorithm

Definition 3.8. [Fully BIC Algorithm] A fully BIC algorithm is BIC for all agents at all rounds,
similar to the detail-free algorithm in Mansour et al. [2015]. We implement Sub-algorithm (1) to be
BIC for agents of type 1 (which will also be BIC for agents of type 2). Then, we run Sub-algorithm (2)
starting from the second racing stage, wherein recommendations are BIC for all agents.
Remark 3.9 (Regret Comparison Between Fully BIC and Partially BIC Algorithms). The type-
specific regret for the fully BIC algorithm (Definition 3.8) is the same as the type-specific regret for
our partially BIC algorithm (see Table 1) wherein we replace the prior-dependent constant term
τ2 PP2 [G ≥ τ ]2 for type 2 with the prior-dependent constant term τ2 PP1 [G ≥ τ ]2 for type 1, which
can be arbitrarily large. In the full version of our paper, we work out a case wherein the priors over
the treatment reward vector θ for each type are Gaussian and the fully BIC algorithm (Definition 3.8)
achieves linear regret Ω(T ), but our algorithm achieves sub-linear regret O(

√
T log(T )).
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