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Abstract
We study test-based binary classification, where
a principal either accepts or rejects agents based
on the outcomes they get in a set of tests. The
principal commits to a policy, which consists of
all sets of outcomes that lead to acceptance. Each
agent is modeled by a distribution over the space
of possible outcomes. When an agent takes a test,
he pays a cost and receives an independent sample
from his distribution as the outcome. Agents can
always choose between taking another test and
stopping. They maximize their expected utility,
which is the value of acceptance if the principal’s
policy accepts the set of outcomes they have and
0 otherwise, minus the total cost of tests taken.

We focus on the case where agents can be either
“good” or “bad” (corresponding to their distribu-
tion over test outcomes), and the principal’s goal
is to accept good agents and reject bad ones. We
show, roughly speaking, that as long as the good
and bad agents have different distributions (which
can be arbitrarily close to each other), the princi-
pal can always achieve perfect accuracy, meaning
good agents are accepted with probability 1, and
bad ones are rejected with probability 1. More-
over, there is a policy achieving perfect accuracy
under which the maximum number of tests any
agent needs to take is constant — in sharp contrast
to the case where the principal directly observes
samples from agents’ distributions. The key tech-
nique is to choose the policy so that agents self-
select into taking tests.

1. Introduction
We often classify based on the outcomes of tests. In a nar-
row sense, tests can take the form of exams, with numerical
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scores as outcomes. For example, a course often has one
or more midterm exams and one final exam, and the intruc-
tor uses the outcomes of these exams to decide the final
grades of (i.e., to classify) students. More generally, a test
can be any activity that takes a certain amount of effort and
produces a verifiable outcome. Examples include job inter-
views, research paper submissions, etc. These outcomes,
presumably correlated with the true skills of the test tak-
ers (henceforth the agents), are then used by a principal
to classify them — the collective feedback from different
interviewers determines whether the interviewee gets the
job, and the list of papers one has published strongly affects
one’s future opportunities as a researcher.

An agent’s performance on tests is inevitably random — on
any given day, a capable student may not perform well due
to being tired or sick, due to bad luck in which questions
were selected, or for reasons that we cannot identify. For
this reason, a principal generally is willing to take into con-
sideration multiple test outcomes when making decisions.
It then matters how these tests are offered to agents. Over-
simplifying, there are two ways of offering tests: mandatory
tests and optional tests. With mandatory tests, the principal
decides which tests each agent should take and/or how many
times they should take them, as well as which (combinations
of) outcomes an agent needs to have in order to be classi-
fied into a certain category. A straightforward example of
mandatory tests is students taking exams in school, where
typically all students are required to take all exams in a
course, whose outcomes together determine the final grade
of the student. On the other hand, with optional tests, the
principal decides the latter but not the former. One example
is (an oversimplified version of) the academic job market,
where agents’ publication records determine whether they
are invited for an onsite interview, but agents can decide how
often to put in the effort to prepare a new paper for submis-
sion to a conference or journal. At first glance, it may appear
that mandatory tests allow the principal tighter control over
the classification process, and therefore would benefit the
principal more than optional tests. As a consequence, the
principal should enforce mandatory tests whenever possible
(or economically feasible). However, the above intuitive rea-
soning does not appear to be fully backed by evidence from
reality: optional tests continue to be implemented in high-
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stakes classification tasks such as US college admissions.1

This raises the following question:

Are there any advantages of optional tests for
classification over mandatory ones?

On top of that, in many other scenarios mandatory tests are
simply unrealistic, and the principal has to rely on optional
tests for decision-making — for example, it is impossible for
an academic hiring committee to require job applicants to
submit their work to certain conferences in a prescribed way,
e.g., one paper to NeurIPS’20 and one paper to ICML’21.
In such cases, the principal would still like the classification
process to be as accurate and efficient as possible. This
leads us to the following question:

How can one design a classification process with
optional tests in the most accurate and/or efficient
way?

Our results. We give somewhat surprising answers to
the above two questions in the case of binary classification
of binary agents (elaborated below): we characterize the
optimal design of a classification process with optional tests,
and based on this show that classification with optional tests
can be arbitrarily more efficient than optimal classification
with mandatory tests for the same task.

To be more specific, we consider a setting where a princi-
pal either accepts or rejects agents based on the set of test
outcomes that they get. Before tests are taken, the principal
commits to a policy, which consists of all sets of outcomes
that lead to acceptance. Each agent is modeled by a distri-
bution over the space of possible outcomes, corresponding
to how the agent tends to perform in a test. When an agent
takes a test, he pays a cost and receives an independent
sample from his distribution as the outcome. Agents can
always choose between taking another test, and stopping.
They maximize their expected utility, which is the value of
acceptance if the principal’s policy accepts the set of out-
comes they have and 0 otherwise, minus the total cost of
tests taken.

We focus on the case where agents can be either “good” or
“bad” (corresponding to two different distributions over test
outcomes), and the principal’s goal is to accept good agents
and reject bad ones. We first characterize the optimal strat-
egy of an agent in response to the principal’s policy. Fixing
the principal’s policy, each agent faces a Markov Decision
Process (MDP), where the state is the set of test outcomes
that he has collected. In general, at any state of the MDP,
the agent can always choose between taking another test

1Applicants may take SAT and/or ACT tests, among others, as
many times as they want.

and stopping, and the optimal strategy could be any function
mapping each combination of outcomes to one of the two
actions. Our first key observation is that without loss of
generality, the agent’s optimal strategy is either to keep tak-
ing tests until acceptance, or to leave immediately without
taking any test. This is because intuitively, after taking some
tests, the agent must have received some outcomes, which
makes his situation at least as good as when he started in
terms of the expected number of future tests he needs to take
in order to be accepted; the cost of the tests already taken is
sunk. So, if an agent ever chooses to start taking tests, he
must be willing to keep taking tests until acceptance, since
the cost of past tests should not affect his decision. This is
making two assumptions: (1) the agent can choose not to
submit some of the test outcomes, and (2) the agent already
knows his own type (good or bad) at the beginning, and
hence is not learning about himself from the test outcomes.

With agents’ optimal strategy characterized, we consider
the principal’s problem, i.e., the design of her classification
policy. We first study the case where the principal controls
the cost of a test, by, for example, charging a registration
fee. We show that in this case, as long as the good and bad
agents have different distributions (which can be arbitrar-
ily close to each other), the principal can always achieve
perfect accuracy, meaning good agents are accepted with
probability 1, and bad ones are rejected with probability 1.
The key technique is to choose the policy so that agents self-
select into (not) taking tests. Moreover, among perfectly
accurate policies, we characterize the one with stochasti-
cally dominant efficiency in terms of the number of tests a
good agent needs to take in order to be accepted. We show
that quite surprisingly, under this policy, no agent ever has
to take more than 2 tests. One may contrast this with the
mandatory tests case, where the principal directly observes
as many samples as she wants from agents’ distributions
— there, in order to classify correctly with probability 2/3,
the number of tests required can be arbitrarily large, as the
distance between the good and bad distributions diminishes.

We then proceed to the case where the cost per test is fixed
externally. With discrete outcomes, we show that perfect
accuracy in general is no longer possible. We then consider
the special case with continuous outcome distributions, or
equivalently, where outcomes are associated with rich noise
that is effectively continuous. We show that in a continuous
world, with different good and bad distributions, perfect
accuracy is again always possible. Moreover, we construct a
perfectly accurate policy under which the maximum number
of tests a good agent needs to take is b1/cc+1 where c is the
fixed cost per test, and show this is essentially best possible
for perfectly accurate policies. We also provide evidence
that the above bound cannot be significantly improved even
if we consider the expected number of tests.
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Related work. Our results are along the line of work on
strategic machine learning (Perote & Perote-Pena, 2004;
Dekel et al., 2010; Cai et al., 2015; Hardt et al., 2016; Rough-
garden & Schrijvers, 2017; Chen et al., 2018; Dong et al.,
2018; Feng et al., 2019; Freeman et al., 2020). Most re-
search on strategic machine learning, including ours, aims
to tackle the potential (mis)alignment of interests between
the learner (i.e., the principal) and entities about which in-
formation is being learned (i.e., agents). One key difference
between our results and existing research is that previous
work along this line typically focuses on preventing strategic
manipulation of the classification process, while we exploit
agents’ incentives to make classification more accurate and
efficient. Exceptions are the recent results by Kleinberg &
Raghavan (2019) and Haghtalab et al. (2020), who study
the improvement in agents’ true features (e.g., skills) that is
encouraged by the classifier deployed by the principal. In
contrast to their work, we consider a model where agents’
features (i.e., the distributions associated with them) are
fixed throughout the classification process.

Closely related to our results is the series of work by Zhang
et al. (Zhang et al., 2019b;a). There, too, agents observe
samples from distributions associated with them, which they
can then strategically transform and subsequently submit
to the principal for classification. Our results differ from
these results in that we consider a novel model where the
number of samples generated is endogenous, depending
on utility-maximizing agents’ private information, whereas
they assume the number of samples is exogenous (fixed
externally).

A conceptually related topic is that of efficient statistics,
where some basic and commonly studied problems are dis-
tinguishing, learning (Chan et al., 2014), and testing (Di-
akonikolas et al., 2015; Valiant & Valiant, 2017) distribu-
tions. Our results can be viewed as efficiently distinguishing
distributions in the presence of strategic behavior.

2. Preliminaries
In this section, we formally define the problem of test-based
classification.

Agents, tests, and outcomes. Each agent is modeled by a
distributionD over a spaceO of possible test outcomes (e.g.,
integers between 0 and 100, corresponding to numerical
scores). Agents can choose to take as many tests as they
want. When an agent with distribution D takes a test, he
receives an outcome drawn from D independently of past
test outcomes, and can then choose to continue taking tests,
or to stop. The outcomes of all the tests taken (which form
a multiset whose elements are from the outcome space O)
will then be used by the principal for classification.

The principal and the policy. The principal, before
agents decide whether or not to take tests, announces a pol-
icy P for classification. The policy in general is a collection
of multisets, each of which consists of certain test outcomes
from the outcome space O. For an agent with outcomes S,
the policy P accepts the agent iff there is a multiset T ∈ P
such that T ⊆ S (i.e., the multiplicity of any element in T is
no larger than that of the same element in S). In other words,
the policy P provides a collection of options to agents, each
of which is a multiset T of outcomes. An agent is accepted
iff his multiset of test outcomes contains any of these op-
tions as a subset. A simple and natural example is when O
is the set of integers between 0 and 100, and P contains a
number of singleton multisets, each of which is an integer
between 60 and 100, i.e., P = {{i} | 60 ≤ i ≤ 100}.
This corresponds to the case where agents can repeatedly
take exams, and are accepted (i.e., pass) iff they ever
get a score of at least 60. Another example would be
P = {{i} | 60 ≤ i ≤ 100} ∪ {{i, j} | 50 ≤ i, j < 60},
which is the same policy as before, except it now also suf-
fices to score at least 50 twice.

How rational agents act in response to a policy. Fixing
a policy P , each agent faces an MDP, where the goal is to
maximize his expected utility. Below we describe this MDP.
Without loss of generality, being accepted gives agents value
1, and each test has a cost of 0 ≤ c ≤ 1 (otherwise agents
would never want to take any test). The states of the MDP,
denoted S , are all multisets over the outcome space O, cor-
responding to the set of outcomes the agent has collected
so far. Initially, the state of the agent is the empty set ∅.
At any state S ∈ S, the agent can choose between two
actions, taking another test (T) or leaving (L). If the agent
chooses T, he pays cost c (i.e., receives reward −c), and
transitions to a new state S ∪ {o} (note that this is a union
of two multisets, where the multiplicity of any element in
the union is the sum of those of the same element in the two
operands), where o ∼ D is a random outcome drawn from
D. If the agent chooses L, he receives reward 1 if his current
multiset of outcomes S is accepted by the policy P , and 0
otherwise; in either case, the MDP terminates immediately.
Throughout the paper, we assume agents are perfectly ra-
tional and always play the utility-maximizing action. For
simplicity, we assume agents always break ties in favor of
leaving, i.e., when the two actions result in equal expected
utility, they always play L. Our results still hold (with minor
modifications) even if agents break ties adversarially.

The principal’s goals. We consider two goals of the prin-
cipal, accuracy and efficiency. We focus on the case where
agents are either good (with distribution G) or bad (with
distribution B), and the principal aims to accept as many
good agents as possible, and reject as many bad ones as
possible. The specific definition of accuracy is immaterial
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— as we will show, the principal can always achieve perfect
accuracy (i.e., good agents are always accepted, and bad
ones always rejected) as long as G and B are not identi-
cal. Given perfect accuracy, the principal may further hope
to implement the classification in an efficient way, where
agents take as few tests as possible. We consider two types
of efficiency measures, the expected number of tests and
the worst-case number of tests. The goal is to design per-
fectly accurate policies which (approximately) minimize
either/both of these two measures.

Control over the costs. In some scenarios, the cost of a
test is controlled by the principal (e.g., when the dominant
part of the cost is a registration fee set by the principal),
while in others it is fixed externally (e.g., when the dominant
part of the cost is time invested in traveling to the test site).
We consider both cases in this paper. The flexible-cost
case allows the principal refined control of the classification
procedure, which, as we will show, implies more efficient
policies in general.

3. Agents’ Optimal Strategy: Self-Selection
We first characterize agents’ best response to a policy, which
effectively makes their decision space binary, and greatly
simplifies the principal’s problem.

Lemma 1. Fixing a policy P and a cost per test c, the
optimal expected reward of any agent is achieved by one of
the following two strategies:

• Take no test (i.e., play L immediately) and leave with
reward 0.

• Keep taking tests (i.e., playing T) until the set of out-
comes collected is accepted by P , and then play L.

Moreover, the optimal strategy is unique iff the above two
strategies result in strictly different expected rewards.

The proof of Lemma 1, as well as all other proofs, is de-
ferred to the appendix. Again, the intuition is that if an
agent ever wants to start taking tests, then after taking some
tests, he will be in at least as favorable a position as at the
beginning in terms of tests passed, and it was worth it to
start then, so it must certainly be worth it to continue now
(the cost of previous tests is sunk, and therefore irrelevant).
One important implication is that, depending on the policy,
the cost per test, and the agent’s distribution, each agent
either does not attempt to get accepted at all, or keeps trying
and eventually gets accepted with probability 1. This indi-
cates that, when provided the right incentives, self-selecting
agents may perform the classification for the principal in a
perfectly accurate way.

More specifically, for any policy P and distribution D over
the outcome space O, let T (P, D) denote the (random)
number of tests an agent with distribution D needs to take
in order to be accepted by P , i.e.,

T (P, D) = min{t | P accepts {o1, . . . , ot}},

where {ot}t≥1 are iid draws fromD. We have the following
claim.
Lemma 2. Fix a policy P and a cost per test c. An agent
with distribution D will always keep taking tests until ac-
ceptance if

c · E{ot}∼DZ+ [T (P, D)] < 1,

and leave immediately otherwise.

In the rest of the paper, we will heavily exploit Lemma 2.

4. The Flexible-Cost Case
We begin our investigation with the case where the cost of
a test is set by the principal, which turns out to be simpler.
For simplicity, we assume the outcome space O = [k] =
{1, . . . , k} for some integer k > 0. For any distribution D
over O (which can be either G or B), for any S ⊆ O, let
D(S) = Pro∼D[o ∈ S]. As a shorthand, for any o ∈ O, let
D(o) = D({o}). All the results in this section can be easily
generalized to arbitrary outcome spaces.

4.1. Memoryless Policies Suffice for Accurate
Classification

We first consider the possibility of accurate classification. In
particular, for reasons that will be clear momentarily, we are
interested in policy-cost pairs that achieve perfect accuracy,
as defined below.
Definition 1 (Perfect Accuracy). A policy-cost pair (P, c)
is perfectly accurate for a good distribution G and a bad dis-
tribution B if the optimal strategies for good agents and bad
agents respectively are to keep taking tests until acceptance
and to leave immediately.

As a corollary of Lemma 2, a pair (P, c) is perfectly accurate
iff

c · E[T (P, G)] < 1 ≤ c · E[T (P, B)].

When the cost per test is controlled by the principal, we
are further interested in policies that are perfectly imple-
mentable.
Definition 2 (Perfect Implementability). A policy P is per-
fectly implementable for a good distribution G and a bad
distribution B if there exists a cost per test c, such that the
policy-cost pair (P, c) achieves perfect accuracy.

Given Lemma 2, we immediately have the following neces-
sary and sufficient condition for perfect implementability.
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Lemma 3. Fix a good distributionG and a bad distribution
B. A policy P is perfectly implementable iff

E[T (P, G)] < E[T (P, B)].

Based on the above characterization, we show that as long
as the good agents’ distribution G is different from the
bad agents’ distribution B, there always exists a perfectly
implementable policy which consists of only singleton sets
of outcomes. In other words, the policy is memoryless, in
that a new test outcome either immediately makes the agent
accepted, or will be entirely ignored.

Theorem 1. For any good distribution G and bad distri-
bution B over the outcome space O = [k] where G 6= B,
there exists a set of outcomes P ⊆ O such that the policy
P = {{o} | o ∈ P} is perfectly implementable.

We remark that such memoryless policies are widely de-
ployed in practice, where the most common form is to set
a threshold and accept an agent iff the highest score he
ever gets passes that threshold. However, as we will show
later, this is not the most efficient form of perfectly accurate
policies.

4.2. Policy with Stochastically Dominant Efficiency

We now proceed to efficient policies. Below we characterize
the perfectly implementable policy P with stochastically
dominant efficiency for any good distribution G and bad
distribution B. The number of tests required for a good
agent to be accepted under this policy, T (P, G), stochasti-
cally dominates the same number, T (P ′, G), of any other
perfectly implementable policy P ′. Furthermore, under this
policy, any good agent is guaranteed to be accepted after
taking at most 2 tests. As a result, this policy achieves the
optimal expected number of tests, the optimal worst-case
number of tests (which is 2), and optimality with respect to
almost any reasonable measure of efficiency.

Theorem 2. Let P ⊆ O = [k] be a set of outcomes such
that

P ∈ argmaxS⊆O:G(S)>B(S)G(S).

The policy

P = {{o} | o ∈ P} ∪ {{o1, o2} | o1, o2 ∈ O}

is perfectly implementable, and stochastically dominates
any other perfectly implementable policy P ′, in the sense
that for any t ∈ Z+,

Pr[T (P, G) ≤ t] ≥ Pr[T (P ′, G) ≤ t].

The policy P constructed in Theorem 2 accepts any set of
outcomes which either contains some outcome in P ⊆ O,
or has cardinality at least 2. In other words, P accepts an

agent if the first outcome he receives is in P , or he ever
takes 2 tests. One may contrast Theorem 2 with the setting
where the principal, rather than the agent himself, chooses
the number of tests each agent needs to take. Suppose,
rather than deploying a policy and letting agents themselves
choose whether or not to take tests, we directly observe
iid samples from an unknown distribution D, which can
be either G or B — this corresponds to the case where we
simply ask each agent to take as many tests as we want.
There, how many samples one needs to observe in order to
tell with confidence whether D is G or B depends on the
total variation distance between G and B, defined below.

Definition 3 (Total Variation Distance). The total variation
distance dTV(D1, D2) between two distributions D1 and
D2 over O is defined as

dTV(D1, D2) = sup
S⊆O

(D1(S)−D2(S)).

Observe that G 6= B iff dTV(G,B) > 0. It is folklore
that in order to identify D with probability at least 2/3, one
needs Ω(dTV(G,B)−2) iid samples from D. Moreover, it
is easy to see that as long as the supports ofG andB overlap,
one can never be completely sure with any finite number
of samples. Theorem 2, on the other hand, essentially says
that whenever dTV(G,B) > 0, the principal never needs to
observe more than 2 samples in order to distinguish G and
B, and good agents never need to take more than 2 tests. In
other words, by incentivizing self-selection, the principal
is able to reduce the number of tests required dramatically,
from Ω(dTV(G,B)−2) to 2, and at the same time improve
the accuracy to 1. Perhaps even more surprisingly, this is
done by giving agents more freedom to choose the number
of tests they take. Of course, this is feasible only because
agents themselves know their distribution at the outset; if no-
body knows the distribution, Ω(dTV(G,B)−2) tests would
still be required. This partially explains the practical success
of classification with optional tests: they can be arbitrarily
more efficient than mandatory tests enforced by the princi-
pal, especially when good and bad agents’ distributions are
closer to each other and therefore are harder to distinguish.

5. The Fixed-Cost Case
Now we proceed to the more challenging setting where
the cost per test c is fixed externally. We show that in
such cases, perfect accuracy in general requires stronger
conditions on the good and bad distributions. However, as
we argue below, these conditions are still rather reasonable
for practical purposes.
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5.1. Accurate Classification Requires Continuous
Information

When the cost per test is set by the principal, Theorem 1
states that perfect accuracy can be achieved by some policy-
cost pair as long as the good and bad distributions are dif-
ferent. However, this is not true when the cost 0 < c < 1 is
fixed, as illustrated in the following example.

Example 1. Suppose the cost per test is fixed at c = 0.9.
The outcome space O = {1, 2}, the good distribution G
assigns probability G(1) = G(2) = 0.5, and the bad distri-
bution B assigns B(1) = 0 and B(2) = 1. Suppose there
is a policy P such that (P, c) is perfectly accurate. Then, in
order for good agents to take tests, by Lemma 2,

E[T (P, G)] < 10/9,

and since T (P, G) is distributed over Z+, elementary cal-
culation gives

Pr[T (P, G) = 1] > 8/9.

As a result, it must be the case that {1} ∈ P and {2} ∈ P
simultaneously. However, this implies

Pr[T (P, B) = 1] = 1 =⇒ E[T (P, B)] < 10/9.

So bad agents will also take tests and get accepted under
(P, c), a contradiction. In other words, no policy P exists
such that (P, c) is perfectly accurate.

The above example shows that perfect accuracy cannot be
achieved with an infeasibly high cost per test, even if the out-
come space is extremely simple (i.e., binary) and the good
and bad distributions are clearly different. Nevertheless, the
impossibility of perfect accuracy comes almost solely from
the discreteness in the outcomes — intuitively, accepting
only one of the two outcomes does not provide enough mo-
tivation for good agents to take tests, while accepting both
provides too much motivation, so that every agent wants to
take tests regardless of his distribution.

Real-world tests, however, are often intrinsically (approx-
imately) continuous. In a narrow sense, test outcomes, in
the form of numerical scores, usually range from 0 to 100,
where presumably an agent can get any integer score in
between with positive probability. As argued above, in a
broader sense, a test could be any activity which takes a
certain effort and produces a verifiable outcome. Besides
numerical test scores, such an outcome could take the form
of a course project, a research paper, or an oral presentation.
These outcomes are essentially continuous, in the sense that,
for example, no two oral presentations are exactly the same,
even if they are given by the same presenter using the same
slides. Even for relatively discrete outcome spaces, an out-
come is often accompanied by arbitrarily rich noise, which

makes outcomes effectively continuous.2 For example, in a
simplistic model, a paper submitted to a conference can be
either accepted or rejected, so one could argue the outcome
of such a submission is binary. However, it is extremely
unlikely that two different papers (as PDF files) share the
same hash value, which can effectively be viewed as contin-
uous noise that we can add to the outcome, thereby making
the outcome space continuous. This (hash value) part of the
enriched outcome may not be correlated with the type of the
agent, but that will not matter for our purposes.

Based on the above observations, in the rest of this sec-
tion, we assume the outcome space O, as well as the
good distribution G and the bad distribution B, is contin-
uous. More specifically, without loss of generality, we as-
sume O = [0, k] for some positive integer k ∈ Z+, and
the good distribution G (resp. the bad distribution B) is
constant when restricted to the interval [i − 1, i] for any
i ∈ [k] = {1, . . . , k}. We call such distributions piecewise
constant.3 One way to interpret this is there there are k pos-
sible outcomes. A good (resp. bad) agent receives the i-th
outcome with probability G([i− 1, i]) (resp. B([i− 1, i])).
Moreover, there is continuous noise x independent of the
outcome and the agent type, uniformly distributed over
[0, 1], so the final combination of the outcome and the noise,
i− x, has distribution G (resp. B). As a shorthand, for any
i ∈ [k], let G(i) = G([i− 1, i]), and B(i) = B([i− 1, i]).
While we focus on this specific model, in fact, our results
apply to general distributions satisfying certain continuity
conditions.

5.2. Accurate Classification with Continuous Outcomes

Under the continuity assumption, we now show that per-
fect accuracy is possible with fixed cost per test, whenever
the good and bad distributions, G and B, are not identi-
cal. Moreover, as in the variable cost case, perfect accuracy
again can be achieved using a memoryless policy.

Theorem 3. When the outcome space O = [0, k], for any
cost per test 0 < c < 1, and good and bad distributions
G and B (where G 6= B) that are constant on [i − 1, i]
for any i ∈ [k], there exists a policy P such that (P, c) is
perfectly accurate for G and B. Moreover, P consists of
only singleton sets of outcomes.

5.3. Nearly Optimal Policies

As illustrated by Theorem 2, memoryless policies do not
generally achieve optimal efficiency when the cost per test
is set by the principal. The same intuition applies to the
fixed cost case as well. Below, we construct a policy for any

2This has also been observed, e.g., in (Zhang et al., 2019b).
3Note that this is a more restrictive definition than the common

notion of piecewise constant distributions.
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piecewise constant and distinct good and bad distributions
which requires at most b1/cc+ 1 tests, where c is the cost
per test. We then show that the policy we construct has (1)
optimal worst case efficiency, and (2) approximately optimal
expected efficiency when the good and bad distributions are
not trivially different.
Theorem 4. When the outcome space O = [0, k], for any
cost per test 0 < c < 1, and good and bad distributions G
and B (where G 6= B) that are constant on [i− 1, i] for any
i ∈ [k], there exists a policy P such that (P, c) is perfectly
accurate for G and B. Moreover,

Pr[T (P, G) ≤ b1/cc+ 1] = 1.

Unlike Theorem 2, the above policy-cost pair is not guaran-
teed to dominate all other perfectly accurate pairs. However,
it is in fact optimal in terms of the maximum number of
tests a good agent may have to take before getting accepted,
as long as the good and bad distributions share the same
support.
Proposition 1. For any piecewise constant good and bad
distributions G and B where G and B share the same sup-
port, if a policy-cost pair (P, c) is perfectly accurate, then

Pr[T (P, G) < b1/cc+ 1] < 1.

In other words, the maximum number of tests a good agent
may have to take is at least b1/cc+ 1.

Proposition 1 states that the policy constructed in Theorem 4
is in fact optimal in terms of the maximum number of tests
any good agent may have to take. However, it is unclear
whether one can do significantly better4 in terms of the
expected number of tests, especially when the good and
bad distributions are sufficiently different. We do show that,
even when good and bad distributions are far apart (i.e.,
when dTV(G,B) = Ω(1)), there still exist good and bad
distributions G and B such that the expected number of
tests required is at least 1/2c. In other words, the policy
constructed in Theorem 4 is also asymptotically optimal (in
a worst-case sense) in terms of the expected number of tests.
Proposition 2. There exist piecewise constant good and
bad distributions G and B where dTV(G,B) = Ω(1), such
that if a policy-cost pair (P, c) is perfectly accurate, then

E[T (P, G)] ≥ 1

2c
.

Again, one can contrast Theorem 4 with the case where
the principal directly determines how many tests an agent

4 It is certainly possible to do somewhat better. For example,
when G([0, 1]) = B([1, 2]) = 0.9, G([1, 2]) = B([0, 1]) = 0.1,
and the cost per test c = 0.5, P = {{o} | o ∈ [0, 1]} accepts
a good agent after 10/9 < b1/cc + 1 = 3 tests in expectation.
(P, c) is perfectly accurate, because a bad agent will require 10
tests in expectation, so a bad agent will not attempt the test.

takes. In that case, as discussed above, the number of tests
required to correctly identify an agent’s distribution D is
Ω(dTV(G,B)−2), whereas Theorem 4 requires good agents
to take at most about 1/c tests and guarantees perfect ac-
curacy, regardless of how close G and B are to each other.
In other words, unless G and B are far away and a small
error probability is acceptable, allowing agents to choose
between taking tests and leaving immediately is far more
efficient than enforcing a certain number of tests.

6. Conclusion and Future Research
In this paper, we characterize the accuracy and efficiency
of classification with optional tests. Our results partially
explain the practical success of optional tests, and provide
a principled way of designing accurate and efficient clas-
sification processes. For future directions, one could relax
some of the assumptions to obtain more robust design of
classification processes. For example, test outcomes might
be strategically transformed (as studied in (Zhang et al.,
2019a)), the cost per test might be unknown, and agents
might not be completely sure about their own distributions
before taking tests.
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Broader Impact
Our results help explain the practical success of classifica-
tion with optional tests. By characterizing the optimal policy
with optional tests, our results provide a principled way of
designing classification criteria which are provably accurate
and efficient. Such criteria could be applied in classification
tasks with potential social impact, e.g., college admissions.
Of course, our results could be used for classification with
harmful objectives and exacerbate the damage.
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A. Omitted Proofs
Proof of Lemma 1. Suppose the agent’s distribution is D. Let π : S → {T, L} be any strategy of the agent (which specifies
the action to take at each state), and V : S → R+ be the expected onward utility of the agent by playing π, i.e.,

V (S) =

{
I[P accepts S], if π(S) = L

−c+ Eo∼D[V (S ∪ {o})], otherwise.

I[·] above denotes the indicator of a statement. Suppose π does not play L immediately, or keep playing T till the set of
outcomes can be accepted. Formally, suppose V (∅) > 0 (which is possible only when π(∅) = T), and there exists S not
accepted by P , where π(S) = L (so V (S) = 0).5 Without loss of generality, let S be a state with the smallest cardinality
among those satisfying this condition, which implies that for any S′ ( S, π(S′) = T. We show that such a policy cannot be
optimal, which implies the claim to be proved.

Consider an extended version of the original MDP, where the state space is all ordered sequences of outcomes. At state
(o1, . . . , ot), if action L is played, the MDP terminates and the agent gains reward I[P accepts {o1, . . . , ot}]. If action T is
played, the agent gains reward −c and transitions to state (o1, . . . , ot, ot+1), where ot+1 ∼ D. Observe that the optimal
expected reward in the extended MDP is the same as that in the original MDP. So, to show that π is suboptimal in the original
MDP, we only need to construct a strategy in the extended MDP with higher expected reward. Consider the following policy
π′ in the extended MDP, which mimicks π unless the first |S| outcomes are exactly S, in which case it drops these outcomes
and start over.

π′((o1, . . . , ot)) =

{
π({o1, . . . , ot} \ S), if {o1, . . . , o|S|} = S

π({o1, . . . , ot}), otherwise.

Consider the expected reward V ′ of π′. First observe that for any state (o1, . . . , ot), if t ≥ |S| and {o1, . . . , o|S|} 6= S, then
V ′((o1, . . . , ot)) = V ({o1, . . . , ot}). We now argue V ′((o1, . . . , ot)) > 0 = V ({o1, . . . , ot) when {o1, . . . , ot} = S. We
couple the onward outcomes from (o1, . . . , ot) in the extended MDP with the sequence of outcomes in the original MDP
(both are iid draws from D), and argue that for any such sequence ot+1, . . . , ot′ , the reward collected by π′ on this sequence
is at least the reward collected by π starting from the initial state ∅. There are essentially two cases.

• π keeps taking tests on ot+1, . . . , ot′ . Here, both π and π′ gain reward −c× (t′ − t− 1).

• π decides to leave after receiving outcome ot′′ , where t+ 1 ≤ t′′ ≤ t′. Here, π gains reward

−c× (t′′ − t− 1) + I[P accepts {ot+1, . . . , ot′′}].

On the other hand, π′ gains reward

−c× (t′′ − t− 1) + I[P accepts {o1, . . . , ot′′}],

which is at least the reward π gains, since {o1, . . . , ot′′} ⊇ {ot+1, . . . , ot′′}.

So in any case π′ collects no less reward than π on ot+1, . . . , ot′ , and as a result,

V ′((o1, . . . , ot)) ≥ V (∅) > 0.

Summarizing the above, for any state (o1, . . . , ot) where t = |S|, we have V ({o1, . . . , ot}) ≤ V ′((o1, . . . , ot)), and the
inequality is strict when {o1, . . . , ot} = S. Now we can apply backward induction, and show that for any (o1, . . . , ot)
where t < |S|, V ({o1, . . . , ot}) ≤ V ′((o1, . . . , ot)), and the inequality is strict when {o1, . . . , ot} ⊆ S. This is possible
since by the choice of S, for any such state, π({o1, . . . , ot}) = π′((o1, . . . , ot)) = T. In particular, we have V (∅) < V ′(()),
as desired. This implies that π is suboptimal in the original MDP, and concludes the proof.

Proof of Lemma 2. Consider the optimal strategy of an agent with distribution D. In light of Lemma 1, we only need to
consider the expected reward when the agent keeps taking tests until he is accepted, and compare that against 0, which is the
reward of leaving immediately. If the agent keeps taking tests, his expected cumulative reward is precisely

E{ot}[1− c · T (P, D)].

5This leaves the case where V (∅) = 0 and π(∅) = T. However, in that case, playing L immediately is also an optimal strategy.
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So, taking tests until acceptance is more preferable iff this number is strictly greater than 0, i.e.,

c · E{ot}[T (P, D)] < 1,

which is precisely the condition in the claim.

Proof of Lemma 3. When the condition holds, one may choose any

c ∈ (1/E[T (P, B)], 1/E[T (P, G)]) .

Lemma 2 then guarantees that (P, c) is perfectly accurate. When the condition does not hold, for any c ≥ 0, we always have

c · E[T (P, G)] ≥ c · E[T (P, B)],

and by Lemma 2 such a pair (P, c) cannot be perfectly accurate.

Proof of Theorem 1. We prove the theorem by construction. The idea is to focus on some particular outcome o∗ where
G(o∗) > B(o∗) and let P = {{o∗}}. So for each test, the probability that a good agent gets outcome o∗ and therefore gets
accepted is strictly greater than the same probability for a bad agent. The principal can then set the cost per test c properly
so that good agents strictly prefer taking tests, while bad agents strictly prefer leaving directly.

First, since G 6= B and O = [k] is finite, there exists some o∗ ∈ O such that G(o∗) > B(o∗) ≥ 0. Let P = {o∗} as stated
above. Consider the situation of good agents. Each time a good agent takes a test, the probability that he receives outcome
o∗ is G(o∗), so T (P, G) follows a geometric distribution with parameter G(o∗), and we have

E[T (P, G)] = G(o∗)−1.

Similarly, for bad agents we have

E[T (P, B)] = B(o∗)−1 > G(o∗)−1 = E[T (P, G)].

By Lemma 3, this immediately implies that P is perfectly implementable.

Proof of Theorem 2. We first show the easy part, i.e., P is perfectly implementable. By Lemma 3, this is equivalent to

E[T (P, G)] < E[T (P, B)].

Below we compute both. Observe that for any distribution D over O,

Pr[T (P, D) ≤ 2] = 1.

For G,
Pr[T (P, G) = 1] = Pr

o∼G
[o ∈ P ] = G(P ).

So
E[T (P, G)] = G(P ) + 2(1−G(P )) = 2−G(P ).

Similarly,
E[T (P, B)] = 2−B(P ),

which by the choice of P is strictly larger than 2−G(P ). This guarantees that P is perfectly implementable.

Now consider any perfectly implementable policy P ′. We show that for any t ∈ Z+,

Pr[T (P, G) ≤ t] ≥ E[T (P ′, G) ≤ t].

Since
Pr[T (P, G) ≤ 2] = 1,
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we only need to show that
Pr[T (P, G) = 1] ≥ E[T (P ′, G) = 1].

Suppose towards a contradiction the opposite. We argue below that P ′ cannot be perfectly implementable.

Let
P ′ = {o | P ′ accepts {o}}.

By our assumption on P ′,

G(P ) = Pr
o∼G

[P accepts {o}] = Pr[T (P, G) = 1]

< E[T (P ′, G) = 1] = Pr
o∼G

[P ′ accepts {o}] = G(P ′).

Then by the choice of P , we have G(P ′) ≤ B(P ′). We argue below that this implies

E[T (P ′, G)] ≥ E[T (P ′, B)],

and as a result, P ′ is not perfectly implementable.

In fact, we show an even stronger claim, i.e., for any t ∈ Z+,

Pr[T (P ′, G) ≤ t] ≤ Pr[T (P ′, B) ≤ t].

First observe that
G(P ′) = Pr[T (P ′, G) = 1] ≤ Pr[T (P ′, B) = 1] = B(P ′).

To analyze Pr[T (P ′, G) = t] and Pr[T (P ′, B) = t] for t > 1, we need to take a closer look at P ′, G and B. Without loss
of generality, assume P ′ = [k′] = {1, . . . , k′} for some k′ ≤ k = |O|. Moreover, if k′ = k, then

Pr[T (P ′, G) = 1] = Pr[T (P ′, B) = 1] = 1,

and we are done. From now on we assume k′ < k. Observe that for any i ∈ {k′ + 1, . . . , k}, G(i) ≥ B(i). This is because
otherwise the set S−i = [k] \ {i} satisfies G(S−i)) > B(S−i) and G(S−i) ≥ G(P ′) > G(P ), violating the choice of P .

Consider two sequences of iid random outcomes, {gt}t and {bt}t, drawn from G and B respectively. We couple {gt}t and
{bt}t such that, when defined as functions of the two outcome sequences respectively, we always have

T (P ′, G) ≥ T (P ′, B).

Let {θt}t be iid real numbers distributed uniformly at random over [0, 1], and

α =
∑
i∈[k]

min(G(i), B(i)).

Let gt be defined in the following way.

gt =

min
{
i ∈ [k]

∣∣∣∑j∈[i] min(G(j), B(j)) ≥ θt
}
, if θt ≤ α

min
{
i ∈ [k]

∣∣∣∑j∈[i] max(G(j)−B(j), 0) + α ≥ θt
}
, otherwise.

And similarly,

bt =

min
{
i ∈ [k]

∣∣∣∑j∈[i] min(G(j), B(j)) ≥ θt
}
, if θt ≤ α

min
{
i ∈ [k]

∣∣∣∑j∈[i] max(B(j)−G(j), 0) + α ≥ θt
}
, otherwise.

For any t ∈ Z+, gt and bt satisfy the following properties.

• If θt ≤ α, then gt = bt.

• If θt > α, then bt ∈ [k′] = P ′. This is because for any i > k′, G(i) ≥ B(i).
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This immediately implies the desired claim. In fact, let T be the smallest integer such that θT > α, so gt = bt for any t < T .
There are two cases.

• P ′ accepts {g1, . . . , gT−1} = {b1, . . . , bT−1} (and maybe also some prefix of this sequence of outcomes). In such
cases, T (P ′, G) = T (P ′, B).

• Otherwise, we have T (P ′, G) ≥ T . On the other hand, bT ∈ P ′, so T (P ′, B) = T ≤ T (P ′, G).

So in any case, we have
T (P ′, B) ≤ T (P ′, G).

This concludes the proof.

Proof of Theorem 3. Without loss of generality, suppose for any i ∈ [k − 1], G(i)/B(i) ≥ G(i+ 1)/B(i+ 1). Note that
since G 6= B, we must have G(1) > B(1) and G(k) < B(k), and as a result, for any θ ∈ (0, k), G([0, θ]] > B([0, θ]).
Consider the family of policies P(θ) parametrized by a threshold θ ∈ O, defined as follows.

P(θ) = {{o} | o ∈ [0, θ]}.

Observe that for any θ ∈ (0, k),

Pr
o∼G

[P(θ) accepts {o}] = G([0, θ]) > B([0, θ]) = Pr
o∼B

[P(θ) accepts {o}].

Since P(θ) is memoryless, this further implies that for any θ ∈ (0, k),

E[T (P(θ), G)] = G([0, θ])−1 < B([0, θ])−1 = E[T (P(θ), B)].

Our goal is to show that there exists some θ ∈ (0, k), such that (P(θ), c) is perfectly accurate, which by Lemma 2 is
equivalent to

c · E[T (P(θ), G)] < 1 ≤ c · E[T (P(θ), B)].

Observe that
E[T (P(θ), B)] = B([0, θ])−1

is continuous in θ on O. Since B([0, 0])−1 =∞ and B([0, k])−1 = 1, there must be some θ∗ ∈ (0, k), such that

B([0, θ∗])−1 = c−1.

Moreover, the same θ∗ satisfies
G([0, θ∗])−1 < B([0, θ∗])−1 = c−1.

As a result, P(θ∗) satisfies the desired conditions. This concludes the proof.

Proof of Theorem 4. The plan is to consider a family of policies parametrized by some threshold, each of which has the
desired worst-case efficiency, and argue some policy in this family together with the cost per test c achieves perfect accuracy.

Let T = b1/cc+ 1. Again, without loss of generality, suppose for any i ∈ [k − 1], G(i)/B(i) ≥ G(i+ 1)/B(i+ 1), and
therefore for any θ ∈ (0, k), we have G([0, θ]] > B([0, θ]). For θ ∈ O, let

P(θ) = {{o} | o ∈ [0, θ]} ∪ {{o1, . . . , oT } | ∀t ∈ [T ], ot ∈ O}.

That is, P(θ) accepts any set of outcomes which contains some outcome from [0, θ], or has cardinality at least T . Observe
that E[T (P(θ), B)] is continuous in θ. Moreover,

E[T (P(0), B)] = T > c−1 and E[T (P(k), B)] = 1 < c−1.

So, there must be some θ∗ ∈ (0, k) such that

E[T (P(θ∗), B)] = c−1.
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And since G([0, θ∗]) > B([0, θ∗]), for any t < T ,

Pr[T (P(θ∗), G) ≤ t] > Pr[T (P(θ∗), B)].

This is because T (P(θ∗), G) and T (P(θ∗), B) follow geometric distributions on {1, . . . , T −1}, with parametersG([0, θ∗])
and B([0, θ∗]) respectively. And as a result,

E[T (P(θ∗), G)] < E[T (P(θ∗), B)] = c−1.

By Lemma 2, (P(θ∗), c) is perfectly accurate.

Proof of Proposition 1. Without loss of generality assume the support of G is O = [0, k]. Suppose, towards a contradiction,
that

Pr[T (P, G) < b1/cc+ 1] = 1.

We show (P, c) cannot be perfectly accurate.

Let T = b1/cc + 1. Consider the first T − 1 outcomes a good agent receives, (g1, . . . , gT−1) ∼ GT−1. Note that the
distribution of (g1, . . . , gT−1), GT−1, is piecewise constant over OT−1, and its support is OT−1. By our assumption,
P accepts (g1, . . . , gT−1) with probability 1. As a result, P must accept everything in OT−1, potentially taking away a
zero-measure set S (where the measure is GT−1, i.e., GT−1(S) = 0).

Now since B is piecewise constant over O, BT−1 is also piecewise constant over OT−1. We then have BT−1(S) = 0. As a
result, P accepts (b1, . . . , bT−1) ∼ BT−1 with probability 1. In other words, we have

Pr[T (P, B) < T ] = 1.

We then proceed by two cases. When 1/c > b1/cc, we have

E[T (P, B)] ≤ b1/cc · Pr[T (P, B) ≤ b1/cc] ≤ b1/cc · Pr[T (P, B) < T ] < 1/c.

When 1/c = b1/cc = T − 1, since
E[T (P, G)] < 1/c = T − 1,

there must exist a multiset T ∈ P where |T | ≤ T − 2. Then for bad agents, since G and B share the same support, we have
BT−2(T ) > 0, and therefore

E[T (P, B)] ≤ (T − 2) ·BT−2(T ) + (T − 1) · (1−BT−2(T )) < T − 1 = 1/c.

So in any case, we have
E[T (P, B)] < 1/c.

Lemma 2 then implies that bad agents have the incentive to take tests till acceptance, and (P, c) is not perfectly accurate, a
contradiction.

Proof of Proposition 2. Below we construct G and B. Let k = 2, and G and B be such that G(1) = 0.4, G(2) = 0.6, and
B(1) = B(2) = 0.5. Observe that dTV(G,B) = 0.1. We argue that for any policy P , we always have

E[T (P, B)] ≤ 2E[T (P, G)].

This directly implies the proposition, since if (P, c) is perfectly accurate, then by Lemma 2,

E[T (P, G)] ≥ 1

2
E[T (P, B)] >

1

2
· c−1 =

1

2c
.

In order to bound E[T (P, B)], again we consider the sequences of outcomes a good agent and a bad agent get respectively,
{gt}t and {bt}t. We again couple {gt} and {bt} such that

Pr[T (P, B) ≤ T (P, G)] = 1,
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which implies the desired bound. Let {θt}t be iid uniform numbers in [0, 1]. For any t ∈ Z+, let bt = 2θt. The construction
of {gt}t is more involved. Each gt is determined collectively by θ2t−1 and θ2t. For any t ∈ Z+, let

gt =


θ2t/0.8, if θ2t−1 ≤ 0.5 and θ2t ≤ 0.8

1 + (θ2t − 0.8)/1.2, if θ2t−1 ≤ 0.5 and θ2t > 0.8

1 + (θ2t + 0.2)/1.2, otherwise.

One may check that {gt} are iid, and each gt has distribution G. More importantly, we always have

gt ∈ {b2t−1, b2t}.

As a result, for any t ∈ Z+ we always have

{g1, . . . , gt} ⊆ {b1, . . . , b2t},

as multisets. Therefore, whenever P accepts {g1, . . . , gt}, it also accepts {b1, . . . , b2t}. This concludes the proof.


