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Abstract
Machine learning techniques can be useful in ap-
plications such as credit approval and college ad-
mission. However, to be classified more favorably
in these contexts, an agent may decide to strate-
gically withhold some of her features, such as
bad test scores. This is a missing data problem
with a twist: which data is missing depends on
the chosen classifier, because the specific classi-
fier is what may create the incentive to withhold
certain feature values. In this paper, we address
the problem of training classifiers that are robust
to this behavior.

We design two classification methods: MINCUT
and HILL-CLIMBING (HC). We show that MIN-
CUT is optimal when the true distribution of data
is fully known. However, it can produce complex
decision boundaries, and hence be prone to over-
fitting in some cases. Based on a characterization
of truthful classifiers that are truthful (i.e., give no
incentive to strategically hide features), we devise
a simpler alternative called HC which consists
of a hierarchical ensemble of out-of-the-box clas-
sifiers, trained using a specialized hill-climbing
procedure which we show to be convergent. We
also show that our algorithms perform well in
experiments on real-world data sets, especially
when features are suitably discretized.

1. Introduction
Applicants to most colleges in the US are required to submit
their scores for at least one of the SAT and the ACT. Both
tests are more or less equally popular, with close to two
million taking each in 2018.1 Applicants usually take one of
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these two tests – whichever they think is more suited to their
own tastes.2 However, given the growing competitiveness of
college admissions, many applicants now take both tests and
then strategically decide whether to drop one of the scores (if
they think it will hurt their application) or report both.3 The
key issue here is that it is impossible to distinguish between
an applicant who takes both tests but reports only one, and
an applicant that takes only one test—for example because
the applicant simply took the one required by her school,
the dates for the other test did not work with her schedule,
or for other reasons that are not strategic in nature.4

Say a college wants to take a principled machine learning
approach to making admission decisions based on the scores
from these two tests. For simplicity, assume no other infor-
mation is available. Assume that the college has enough
historical examples that contain the scores of individuals (on
whichever tests are taken, truthfully reported) along with the
corresponding ideal (binary) admission decisions.5 Based
on this data, the college has to choose a decision function
that determines which future applicants are accepted. If
this function is known to the applicants, they are bound to
strategize and use their knowledge of the decision function
to decide the scores they report.5 How can the classifier be
trained to handle strategic reporting of scores at prediction
time?

To see the intricacies of this problem, let us consider a
simple example.
Example 1. Say the scores for each of the two tests (SAT
and ACT) take one of two values: H (for High) or L (for
Low). Let ∗ denote a missing value. Then there are eight
possible inputs (excluding (∗, ∗) since at least one score is
required): (H,H), (H,L), (L,H), (L,L), (H, ∗), (∗, H),
(L, ∗) and (∗, L). Assume the natural distribution (without
any withholding) over these inputs is known, and so are the
conditional probabilities of the label Y ∈ {0, 1}, as shown
below:

Assume Y = 1 is the more desirable ”accept” decision.
Then, ideally, we would like to predict Ŷ = 1 wheneverX ∈
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We make these assumptions more generally throughout the paper.
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Table 1. True distribution of inputs and targets: ∗ denotes a missing value.
X (H,H) (H,L) (L,H) (L,L) (H, ∗) (∗, H) (L, ∗) (∗, L)

Pr(X) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Pr(Y = 1 | X) 0.9 0.7 0.3 0.1 0.6 0.6 0.2 0.2
Pr(Y = 0 | X) 0.1 0.3 0.7 0.9 0.4 0.4 0.8 0.8

{(H,H), (H,L), (H, ∗), (∗, H)}. However, the strategic
reporting of scores at prediction time effectively means, for
example, that an input (∗, H) cannot be assigned the accept
decision of Ŷ = 1 unless the same is done for (L,H) as
well; otherwise, someone with (L,H) would simply not
report the first test, thereby misreporting (∗, H) and being
accepted. Taking this into account, the optimal classifier is
given by Ŷ = 1 whenever X ∈ {(H,H), (H,L), (H, ∗)}

There are many other settings where a similar problem arises.
Many law schools now allow applicants to choose between
the GRE and the traditional LSAT.6 Recently, as a result of
the COVID-19 pandemic, universities have implemented
optional pass/fail policies, where students can choose to
take some or all of their courses for pass/fail credit, as op-
posed to a standard letter grade that influences their GPA.
They are often able to decide the status after already know-
ing their performance in the course. For credit scoring,
some individuals or enterprises might not report some of
their information, especially if this is not mandatory by law
(Florez-Lopez, 2010).

The ability of strategic agents to withhold some of their
features at prediction time poses a challenge only when the
data used to train the classifier has some naturally missing
components to begin with. For if not, the principal – e.g.,
the entity deciding on admissions – can decide to reject all
agents that withhold any of their features, thereby forcing
them to reveal all features. We focus on how a principal
can best train classifiers that are robust even when there is
strategic withholding of data by agents. Our methods will
produce classifiers that eliminate the incentive for agents to
withhold data.

Our contributions We now describe the key questions
we are faced with, and how we answer them. Our model is
described formally in Section 2. All our proofs are in the
Supplement.

If the true input distribution is known, can we compute the
optimal classifier? (Section 3) We answer this question in
the affirmative by showing that the problem of computing
the optimal classifier (Theorem 1) in this setting reduces to
the classical Min-cut problem (Cormen et al., 2009). This
analysis also gives us the MINCUT classifier, which can
be computed on the empirical distribution, estimated using
whatever data is available. However, since it can potentially
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give complex decision boundaries, it might not generalize
well.

Are there simpler classifiers that are robust to strategic
withholding of features? (Section 4) We first characterize
the structure of classifiers that are “truthful”, i.e., give no
incentive to strategically hide features at prediction time
(Theorem 2). Using this characterization, we devise a hill-
climbing procedure (HC) to train a hierarchical ensemble
of out-of-the-box classifiers and show that the procedure
converges (Theorem 4) as long as we have black-box access
to an agnostic learning oracle. We also analytically bound
the generalization error of HC (Theorem 3). The ensemble
of HC can be populated with any commonly used classifiers
such as logistic regression, ANNs, etc.

How do our methods perform on real data sets? (Section 5)
We conduct experiments on several real-world data sets to
test the performance of our methods, comparing them to
each other, as well as to other methods that handle missing
data but ignore the strategic aspect of the problem. Our
methods perform well, especially when we suitably dis-
cretize the data, thereby reducing overfitting.

Related work Our work falls broadly in the area of strate-
gic machine learning, wherein a common assumption is that
strategic agents can modify their features (i.e., misreport)
in certain ways (normally at some cost), either to improve
outcomes based on the classifier chosen by the principal
(Hardt et al., 2016) or to influence which classifier is chosen
in the first place (Dekel et al., 2010a). The main challenge in
strategic machine learning, as in this paper, is the potential
misalignment between the interests of the agents and the
principal. Existing results in this line of work (Chen et al.,
2018; Kleinberg & Raghavan, 2019; Haghtalab et al., 2020),
often mainly theoretical, consider classifiers of a specific
form, say linear, and ways of misreporting or modifying
features in that context. Our results are different in that
we focus on a specific type of strategic misreporting, i.e.,
withholding parts of the data, and devise general methods
that are robust to this behavior that, in addition to having
theoretical guarantees, can be tested practically, as done in
this paper.

Our problem can also be viewed as an instance of auto-
mated mechanism design with partial verification (Green &
Laffont, 1986; Yu, 2011; Kephart & Conitzer, 2015; 2016)
where it is typically assumed that the feature space (usu-
ally called type space in mechanism design) is discrete and
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has reasonably small cardinality, and a prior distribution
is known over the feature space. In contrast, the feature
spaces considered in this paper consist of all possible combi-
nations of potentially continuous feature values. Moreover,
the population distribution can only be accessed by observ-
ing examples. Thus, common methodologies in automated
mechanism design do not suffice for our setting.

A set of closely related (in particular, to Theorem 1) theoret-
ical results are those of Zhang et al. [2019b; 2019a] on the
problem of distinguishing “good” agents from “bad” (where
each produces a different distribution over a sample space,
and the agent can misreport the set of n samples that she
has drawn). However, our work is different in that we con-
sider the standard classification problem, we focus more on
practical aspects, and we do not rely on the full knowledge
of the input distribution.

Our work also finds a happy intersection between strategic
machine learning and the literature on classification with
missing data (Batista & Monard, 2003; Marlin, 2008). We
devise methods that can deal with the strategic withholding
by agents of some of their features, against a backdrop of
missing data caused by natural reasons (e.g., nonstationary
distributions of which features are present, or input sensor
failures). Our hill-climbing algorithm can be viewed as an
ensemble method for missing data (Conroy et al., 2016)
that is strategy-proof against the aforementioned strategic
behavior. We also study the performance of other stan-
dard, non-strategic classification methods for missing data
in the strategic setting, including predictive value imputation
and reduced-feature modeling (Saar-Tsechansky & Provost,
2007).

The problem we study is also connected to adversarial clas-
sification (Dalvi et al., 2004; Globerson & Roweis, 2006;
Dekel et al., 2010b). We discuss this in more detail in the
Supplement.

2. Preliminaries
We now describe our model and define notation required for
our results in the ensuing sections.

Model with strategically withheld features: We have an
input space X , a label space Y = {0, 1}, and a distribution
D over X × Y which models the population. A classifier
f : X → Y maps a combination of features to a label. Let
F = [k] = {1, . . . , k} be the set of features, each of which a
data point may or may not have. For a data point x ∈ X , let
xi denote the value of its i-th feature (xi = ∗ if x does not
have feature i ∈ [k]). For any set of features S ⊆ [k], define
x|S to be the projection of x onto S (i.e., retain features in

S and drop those not in S):

(x|S)i =

{
xi, if i ∈ S
∗, otherwise.

We assume that data can be strategically manipulated at
prediction (test) time in the following way: an agent whose
true data point is x can report any other data point x′ such
that x|S = x′ for some S ⊆ [k]. We use→ to denote the
relation between any such pair x, x′ (x→ x′ ⇐⇒ ∃S ⊆
[k] : x|S = x′). Note that → is transitive, i.e., for any
x1, x2, x3 ∈ X , x1 → x2 and x2 → x3 =⇒ x1 → x3.

We assume agents prefer label 1 to 0: in response to a
classifier f , an agent with data point x will always withhold
features to receive label 1 if possible, i.e., the agent will
report x′ ∈ argmaxx′′:x→x′′ f(x′′). Incorporating such
strategic behavior into the loss of a classifier f , we get

`D(f) = Pr
(x,y)∼D

[
y 6= max

x′:x→x′
f(x′)

]
.

Truthful classifiers We will also be interested in truthful
classifiers, which provably eliminate incentives for such
strategic manipulation. A classifier f is truthful if for any
x, x′ ∈ X where x → x′, f(x) ≥ f(x′). In other words,
not withholding any features is always an optimal way to
respond to a truthful classifier. As a result, the loss of any
truthful classifier f in the presence of strategically withheld
features has the standard form: `D(f) = Pr(x,y)∼D[f(x) 6=
y].

Note that the so-called Revelation Principle – which states
that in the presence of strategic behavior, any classifier f
is equivalent to a truthful classifier f ′ – holds in this case
because the reporting structure is transitive (see (Zhang
et al., 2019a), details in appendices). In other words, we are
guaranteed that, for any classifier f , there exists a truthful
classifier f ′, such that for any x ∈ X , maxx′:x→x′ f(x′) =
f ′(x). Therefore, we focus on truthful classifiers in our
model, without loss of generality.

3. Known Distributions and the MINCUT
Classifier

We first present a method for computing an optimal classifier
when the input distribution is fully known. Assuming X
is finite, our goal is to characterize a classifier f∗ which
minimizes the loss `D(.), for a known input distribution D.
As shorthand, define, for all x ∈ X ,

Definition 1. D+(x) := Pr(x′,y′)∼D[x′ = x ∧ y′ =
1], D−(x) := Pr(x′,y′)∼D[x′ = x ∧ y′ = 0].

The basic idea here is simple: we need to partition X into
two sides, one labeled 1 and the other 0, where the error ac-
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crued for each x ∈ X is given by D+(x) or D−(x), accord-
ing to whether x is labeled 1 or 0. Such a partition should
crucially respect the constraints imposed by the strategic
behavior of agents, i.e., if x→ x′, then either x is labeled 1
or x′ is labeled 0.

Definition 2. Given X and D, let G(D,X ) be a directed
capacitated graph with vertices V = X ∪ {s, t}, where the
edges E and edge capacities u are defined as follows:

• For each x ∈ X , there is an edge (s, x) ∈ E with capacity
u(s, x) = D−(x), and an edge (x, t) ∈ E with capacity
u(x, t) = D+(x).

• For all pairs x, x′ ∈ X such that x→ x′, there is an edge
(x′, x) ∈ E with capacity u(x′, x) =∞.

In terms of the graph defined above, computing the optimal
classifier f∗ we seek is equivalent to finding a minimum s-t
cut on G(D,X ). The intuition is that the edges from s and
to t reflect the value gained from labeling an example 0 or 1,
respectively; one of the edges must be cut, reflecting the loss
of not assigning it to the corresponding side. Moreover, if
x→ x′, then the corresponding edge with infinite capacity
prevents assigning x to the 0 side and x′ to the 1 side.

Theorem 1. If (S, S̄) is a minimum s-t cut of G(D,X )
(where S is on the same side as s), then for the classifier
f∗(x) := 1(x ∈ S̄), we have `D(f∗) = minf `D(f).

We note that, consequently, the optimal classifier can be
computed in poly(|X |) time. In practice, it is natural to
expect that we do not know D exactly, but have a finite
number of samples from it. A more practical option is to
apply Theorem 1 to the empirical distribution induced by
the samples observed, and hope for the classifier computed
from that to generalize to the true population distribution D.

The MINCUT Classifier Given a set X̂ ofm i.i.d. samples
from D, let X̄ := X̂ ∪ {x′ : x′ → x,∃x ∈ X̂} and D̂
be the corresponding empirical distribution over X̄ . The
MINCUT classifier is then obtained by applying Theorem 1
to G(D̂, X̄ ). At test time, samples not in X̄ are given the 0
label. It can be seen that MINCUT is a truthful classifier. In
light of traditional wisdom, the smaller m is relative to X ,
the larger the generalization error of MINCUT will be. We do
not attempt a theoretical analysis in this regard, but note that
when X is large, the generalization error can be extremely
large (see Example 2 in the Supplement). Therefore, a
suitable discretization of features is sometimes useful, as
we shall see in Section 5.

4. Truthful classifiers and HILL-CLIMBING

The other drawback of MINCUT, related to the issue of
generalization just discussed, is that the decision boundary

it generates is potentially complex, and therefore hard to
interpret meaningfully in a practical setting. In this section,
we devise a simpler alternative called HILL-CLIMBING. To
help introduce this algorithm, we first present a characteriza-
tion of truthful classifiers in our setting, since we can limit
our focus to them without loss of generality (as discussed in
Section 2). For shorthand, we use the following definition:

Definition 3 (F ′-classifier). For a subset of features F ′ ⊆
F , a classifier f is said to be an F ′-classifier if for all x ∈ X ,
we have f(x) = f(x|F ′) and xi = ∗ =⇒ f(x) = 0.

In other words, an F ′-classifier depends only on the values
of the features in F ′, rejecting any x where any of these
is empty. We can collect many such classifiers into an
ensemble as follows:

Definition 4 (MAX Ensemble). For a collection of classi-
fiers C = {fj}, its MAX Ensemble classifier is given by
MAXC(.) := maxj fj(.).

This is equivalent to getting each agent to pick the most
favorable classifier from among those in {fj}. Now using
the above definitions we have the following characterization
of truthful classifiers:

Theorem 2. A classifier f is truthful iff f(.) = MAXC(.)
for a collection of classifiers C = {fj} such that, for some
{Fj} ⊆ 2F , each fj is an Fj-classifier .

Now, for any truthful classifier f , we can bound the gap
between its population loss `D(f) and its empirical loss on a
set of samples X̂ denoted by `X̂ (f) := 1

m

∑
i∈[m] |f(xi)−

yi|. Before stating a theorem to this end, we define the
following entities: LetH be a base hypothesis space over X ,
and n ∈ {1, . . . , 2k} be a parameter. Define d := dVC(H)
to be the VC dimension of H. Define H̄ as the set of all
classifiers that can be written as the MAX Ensemble of n
classifiers inH.

Theorem 3. Let X̂ = {(xi, yi)}i∈[m] be m i.i.d. sam-
ples from D. For any f ∈ H̄, for any δ > 0, with
probability at least 1 − δ, we have `D(f) ≤ `X̂ (f) +

O

(√
dn·log dn·logm+log(1/δ)

m

)
.

It is easy to see that for any of the common hypothesis
spaces used in practice – sayH consists of linear hypotheses
– if a truthful classifier f is inH, then so are the components
of the MAX Ensemble version of f as in Theorem 2. We
have, however, stated Theorem 3 in slightly more general
terms.

The HILL-CLIMBING classifier We now present a hill-
climbing approach with provable convergence and general-
ization guarantees. The HILL-CLIMBING classifier (hence-
forth HC) builds upon the characterization of truthful clas-
sifiers in Theorem 2. Intuitively, the approach works by
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considering a hierarchy of classifiers, organized by the fea-
tures involved. For example, consider a setting with k = 3
features. We make a choice as to what classifiers we use —
say f1 for input of the form (x1, ∗, ∗), f2 for input of the
form (x1, x2, ∗), and f3 for input of the form (x1, x2, x3).
Any agent with features 1 and 2 (but not 3), for example,
should be able to report both features so as to be classified
by f2, or feature 2 to be classified by f1 instead. So in effect,
assuming full knowledge of the classifiers, each agent can
check all of the classifiers and choose the most favorable
one. Without loss of generality, we assume that when a data
point does not have all the features required by a classifier,
the outcome is automatically a rejection.

In short, HC (defined formally in Algorithm 1) works as
follows: first choose a hypothesis space H, in order for
Theorem 3 to apply. Then select n subsets of F (where n
is a parameter), say F1, F2, . . . , Fn. For each Fj , we learn
a Fj-classifier, say fj , from among those in H . Start by
initializing these classifiers to any suitable {f0

1 , . . . , f
0
n}. In

each iterative step, each of the basic classifiers is updated to
minimize the empirical loss on the samples that are rejected
by all other classifiers. We next show that such an update
procedure always converges. To do so, as far as our theoret-
ical analysis goes, we assume we have black-box access to
an agnostic learning oracle (Line 1 in Algorithm 1). After
convergence, the HC classifier is obtained as the MAX En-
semble of these classifiers. The generalization guarantee of
Theorem 3 applies directly to the HC classifier.
Theorem 4. Algorithm 1 converges.

Algorithm 1 HILL-CLIMBING (HC) Classifier

Input: data set X̂ = {(xi, yi)}i∈[m], n subsets
F1, F2, . . . , Fn of F.
Initialize: t← 0, {f0

1 , . . . , f
0
n}.

while ∆ > 0 do
for i = 1, 2, . . . , n do
Si ← {(x, y) ∈ X̂ : f tj (x|Fj

) = 0,∀j 6= i}.
f t+1
i = argminf∈H

∑
(x,y)∈Si

|f(x|Fi
)− y|.

end for
f∗ ← MAX{ft+1

1 ,...,ft+1
n }; `t = `X̂ (f∗)

∆← `t − `t−1; t← t+ 1
end while
Return: f∗.

Implementing HC. In practice, the basic classifiers
{f1, f2, . . . , fn} in HC can be populated with any stan-
dard out-of-the-box classifiers such as logistic regression
classifiers or neural networks, the choice of which can influ-
ence the performance of f . In Section 6, we test HC with
a few such options. The assumption of having access to
an agnostic learning oracle does not play a crucial role in
practice, with standard training methods performing well

enough to ensure convergence. We also note that we are free
to choose any F1, F2, . . . , Fn to define HC – we perform
feature selection on datasets with a large number of features,
and use all possible subsets of the selected features (see
Section 5).

5. Evaluation
In this section, we compare the performance of MINCUT
and a few variants of HC against several out-of-the-box
counterparts (that do not account for the strategic withhold-
ing of data). We show that our methods provide a significant
advantage when such strategic behavior is at play.

Datasets Four credit approval datasets are obtained from
the UCI repository (Dua & Graff, 2017) – one each from
Australia, Germany, Poland and Taiwan. Due to computa-
tional constraints in simulating the combinatorial strategic
behavior, we filter each dataset to only the top 4 features
according to ANOVA F-value. The variation, across the
datasets, of the types of features thus obtained, provides us
with a wide variety of testing conditions. Also, as is com-
monplace, these datasets are imbalanced to various degrees.
In order to demonstrate the performance of classifiers in a
standard, controlled setting, we balance them via random un-
dersampling. The basic characteristics of the datasets before
and after these two steps of preprocessing are summarized
in Table 2.

We then randomly remove a fraction ε = 0, 0.1, . . . , 0.5 of
all feature values in each dataset to simulate data that is
missing “naturally” – i.e., not due to strategic withholding.

Classifiers We evaluate MINCUT, and variants of HC that
use logistic regression (LR) and neural networks (ANN).
We select LR for its popularity in credit scoring and ANN
for being the best-performing individual classifiers on credit
approval datasets (Lessmann et al., 2015).

For the purposes of comparison, we include MAJ – pre-
dict the majority label if examples with the exact same
feature values appeared in the training set, and reject if not
– which can be thought of as a non-strategic counterpart
of MINCUT. We also include standard methods like kNN
(k-Nearest Neighbors, which is somewhat similar to MAJ),
and others such as ANN and LR. Since HC is an ensemble
method, RF (Random Forest), the best-performing homo-
geneous ensemble on credit approval datasets (Lessmann
et al., 2015), is added to the mix. We use these out-of-the-
box methods (kNN, LR, ANN, RF) by employing either
mean/mode imputation (Lessmann et al., 2015) or reduced-
feature modeling (Saar-Tsechansky & Provost, 2007), to
deal with missing data. We use MINCUT, HC, and MAJ
with and without discretization (Fayyad & Irani, 1992). For
the sake of our exposition here, we do not use discretization
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Table 2. Dataset summary statistics

Dataset Size Total # of features Size after balancing Features after selection

Australia 690 15 614 2 numerical, 2 categorical
Germany 1000 20 600 1 numerical, 3 categorical
Poland (5-year) 5910 64 820 4 numerical
Taiwan 30,000 23 13,272 4 ordinal

for Imputation and Reduced Feature methods, as it does not
really help (see Results below, and also the Supplement).

Testing We test all methods under two ways of reporting:
“truthful”, i.e., all features are reported as is, and “strate-
gic”, i.e., some features might be withheld if it leads to a
better outcome. We measure the test accuracy of each clas-
sifier, averaged over N=100 runs, with randomness over the
undersampling and the data that is randomly chosen to be
missing.7 Other metrics, and details about implementing
and training the classifiers, are discussed in the Supplement.

Results In Table 3, we present the mean accuracy (across
the randomization just discussed) of all the methods we con-
sider, with both truthful and strategic reporting, for each of
the four data sets (for one value of ε = 0.2). The main
takeaways from these numbers are the following: • At
least one of the HC and MINCUT variants outperforms all
out-of-the-box classifiers under strategic reporting.. • Dis-
cretization helps HC and MINCUT when the features are
mostly continuous (e.g., Poland), and naturally, not when
the data is already discrete (e.g., Taiwan). And as expected,
under truthful reporting, the standard out-of-the-box meth-
ods perform better, especially LR (Imputation). However,
LR (Imputation, and also, Reduced Feature) do not perform
well under strategic reporting (especially in Germany and
Taiwan, where the data is more discrete), as we discuss next.

In Figure 1, we present a box plot of the accuracy of various
classifiers across our experiments, under strategic reporting.
For the sake of exposition, out of all the out-of-box-methods,
we include just LR (both Imputation and Reduced Feature
variants). In addition to reinforcing the above-mentioned
takeaways, Figure 1 leads to a few more interesting obser-
vations: • Imputation-based methods are sensitive in how
they interact with the mean/mode value used in imputa-
tion: if the imputed values are generally a negative signal,
then agents have little incentive to drop features, and these
methods perform well (Fig. 1, Australia); if the imputed
values are generally a positive signal, then agents would
withhold features, and these methods perform worse (Fig. 1,
Poland); and finally, if the imputed values do not give a
clear signal (e.g., when the distribution of each feature value
is not skewed), there is a high variance in the performance

7to simulate data missing for non-strategic reasons.

of these methods (Fig. 1, Germany). • Reduced Feature
modeling, despite performing comparably to imputation
under truthful reporting, allows too many examples to be
accepted under strategic reporting, which significantly hurts
its performance. This is true especially for smaller ε, since
then each of the component classifiers have fewer examples
to train on, and therefore, present several viable options for
strategic withholding.

A note on feature selection Given that we filter our data
sets to just the top 4 features, we check the accuracy of
the imputation classifiers under truthful reporting using all
the features available (Table 4). We restrict ourselves to
imputation methods here, since they are computationally
tractable with a large number of features. When we do
this for ε = 0, 0.2, we find that the accuracy achieved is
similar to when we use just the top 4 features (Tables 3, 4).
Therefore, if we were somehow able to simulate strategic
reporting on a large number of features (which is needed to
test out-of-the-box methods), it is plausible that our methods
working on just the 4 features will still do better.

6. Conclusion
In this paper, we studied the problem of classification when
each agent at prediction time can strategically withhold
some of its features to obtain a more favorable outcome.
We devised classification methods that are robust to this
behavior, i.e., eliminate the incentive for an agent to with-
hold data. We presented the MINCUT classifier, which is
optimal given full knowledge of the input distribution, but
can sometimes lead to overfitting. We also characterized
the space of all possible truthful classifiers in our setting,
showing that they can be thought of hierarchical ensembles
of a specific kind. Building on this characterization, we
defined a HC methodology for constructing such ensembles,
which has provable generalization guarantees. We tested
these methods on real-world data sets, showing that they
outperform standard methods that do not account for the
aforementioned strategic behavior.

In order to train a classifier using the HC methodology, we
start by selecting a small number of features from the data.
This comes at little cost on the data sets that we test on –
most of the information useful for prediction is contained
within these features. Therefore, most standard methods
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Table 3. Our methods vs. the rest: mean classifier accuracy for ε = 0.2 (”w/ disc.” stands for ”with discretization of features”, ”Tru.” for
”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .793 .793 .640 .640 .659 .659 .648 .648
HC (LR) w/ disc. .794 .794 .642 .642 .690 .690 .650 .650
HC (ANN) .774 .774 .625 .625 .640 .640 .647 .647
HC (ANN) w/ disc. .769 .769 .617 .617 .679 .679 .648 .648
MINCUT .768 .768 .581 .581 .500 .500 .652 .652
MINCUT w/ disc. .789 .789 .630 .630 .693 .693 .649 .649
MAJ .665 .670 .539 .524 .500 .500 .678 .560
MAJ w/ disc. .795 .618 .605 .533 .715 .565 .688 .566
LR (Imputation) .796 .788 .665 .579 .715 .662 .670 .619
ANN (Imputation) .798 .786 .665 .581 .704 .648 .686 .535
RF (Imputation) .771 .630 .626 .561 .722 .603 .679 .549
kNN (Imputation) .791 .722 .638 .566 .694 .626 .662 .560
LR (Reduced Feature) .809 .544 .632 .508 .669 .510 .666 .592
ANN (Reduced Feature) .806 .542 .629 .509 .661 .509 .668 .546
RF (Reduced Feature) .779 .537 .611 .507 .698 .518 .679 .574
kNN (Reduced Feature) .781 .531 .604 .505 .655 .510 .658 .586

Figure 1. Box plot of classifier accuracy: under strategic reporting

Table 4. Mean accuracy without feature selection: imputation methods under truthful reporting

Classifier
Australia Germany Poland Taiwan

ε = 0 ε = .2 ε = 0 ε = .2 ε = 0 ε = .2 ε = 0 ε = .2

LR (Imp.) .848 .803 .690 .660 .746 .733 .670 .657
ANN (Imp.) .843 .802 .685 .654 .753 .740 .703 .690
RF (Imp.) .869 .822 .702 .664 .812 .786 .704 .696
kNN (Imp.) .811 .772 .655 .621 .743 .720 .667 .650
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perform very similarly whether they are applied to all the
features or just these. And it is natural to expect that using
a smaller number of features diminishes the damage done
by strategic behavior under most reasonable classifiers. The
other reason is that having a small number of features makes
it easy to train MINCUT and HC. Still, an interesting open
question is to extend these techniques to settings in which it
is important to use a large number of features.

There is an extremely rich literature on dealing with miss-
ing data in general (Rubin, 1976; Allison, 2001; Batista &
Monard, 2003; Saar-Tsechansky & Provost, 2007). We com-
plement this line of research by focusing on the specific case
where data is missing for strategic reasons. An important
question for future work is to develop a broader theory of
robustness to missing data that naturally includes the case
of strategic withholding.
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Broader Impact
The methods presented in this paper are geared towards
preventing the strategic withholding of data when machine
learning methods are used in real-world applications. This
will increase the robustness of ML techniques in these con-
texts: without taking this issue into account, deployment
of these techniques will generally result in a rapid change
in the distribution of submitted data due to the new incen-
tives faced, causing techniques to work much more poorly
than expected at training time. Thus, there is an AI safety
(Amodei et al., 2016) benefit to our work. The lack of
strategic withholding also enables the collection of (truth-
ful) quality data. Of course, there can be a downside to this
as well if the data is not used responsibly, which could be the
case especially if the features that (without our techniques)
would have been withheld are sensitive or private in nature.
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A. Further related work
Our work can, in a way, be thought of as studying an adversarial classification (see, e.g., Vorobeychik & Kantarcioglu, 2018)
problem – in particular, a decision-time, white-box, targeted attack on binary classifiers, assuming that the only strategy
available to the attacker is to remove feature values, and the attacker’s goal is to maximize the number of instances classified
as positive. In this regard, what we study is similar in spirit to some of the existing literature (Globerson & Roweis, 2006;
Syed & Taskar, 2010; Dekel et al., 2010b) on adversarial classification.

For example, (Globerson & Roweis, 2006) consider a problem where, at test time, the attacker can set up to a certain number
of features (say pixels in an image) to zero for each instance individually in a way that is most harmful to the classifier
chosen. To be robust to such attacks, they devise convex programming based methods that avoid depending on small sets
of features to learn the class structure. Our work is different in that we take a more game-theoretic approach to designing
classifiers (including ensemble-based ones) that are fully resistant to the strategic withholding of features by agents (that
prefer being labeled positively). Moreover, we make no assumptions on the actual structure of the feature space.

B. Proofs
Theorem 1. If (S, S̄) is a minimum s-t cut of G(D,X ) (where S is on the same side as s), then for the classifier
f∗(x) := 1(x ∈ S̄), we have `D(f∗) = minf `D(f).

Proof. First observe that any classifier f can be viewed equivalently as a subset of X , given by

{x ∈ X | f(x) = 1}.

Below, we use these interpretations, i.e., as a function or a subset, of a classifier interchangeably.

The loss of a truthful classifier f can then be written as

`D(f) = Pr
(x,y)∼D

[(x ∈ f ∧ y = 0) ∨ (x /∈ f ∧ y = 1)]

= Pr
(x,y)∼D

[x ∈ f ∧ y = 0] + Pr
(x,y)∼D

[x /∈ f ∧ y = 1]

=
∑
x∈f

Pr
(x′,y)∼D

[x′ = x ∧ y = 0] +
∑
x/∈f

Pr
(x′,y)∼D

[x′ = x ∧ y = 1]

=
∑
x∈f

D−(x) +
∑
x/∈f

D+(x),

where the last line follows from Definition 1.

Therefore, our goal is to solve the following optimization problem:

min
f⊆X

∑
x∈f

D−(x) +
∑
x/∈f

D+(x)

s.t. x′ ∈ f =⇒ x ∈ f ∀x, x′ ∈ X where x→ x′.

Consider the following min-cut formulation (using Definition 2): Let G(D,X ) be a directed capacitated graph, with vertices
V = X ∪ {s, t}, with edges E and edge capacities u defined as follows:

• For each x ∈ X , there is an edge (s, x) ∈ E with capacity D−(x), and an edge (x, t) ∈ E with capacity D+(x).

• For each pair x, x′ ∈ X where x→ x′, there is an edge (x′, x) ∈ E with capacity∞.

Observe that each finite-capacity s-t cut (S, S̄) corresponds bijectively to a truthful classifier f := 1(x ∈ S̄ \{t}). Moreover,
the capacity of the cut is given precisely by∑

x∈S̄∩X

D−(x) +
∑

x∈S∩X
D+(x) =

∑
x∈f

D−(x) +
∑
x/∈f

D+(x) = `D(f).
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Therefore, any s-t min-cut corresponds to an optimal classifier f∗, which can be computed “efficiently” (i.e., in time
poly(|X |)) using any efficient max-flow algorithm given complete knowledge of D.

Theorem 2. A classifier f is truthful iff f(.) = MAXC(.) for a collection of classifiers C = {fj} such that, for some
{Fj} ⊆ 2F , each fj is an Fj-classifier .

Proof. Recall that the revelation principle holds in our setting (as mentioned in Section 2, also see Proposition 1). It
therefore suffices to characterize all direct revelation classifiers. For any (not necessarily truthful) classifier f , consider
its direct revelation implementation f ′, which maps feature values x to the most desirable label the data point can get by
dropping features, i.e.,

f ′(x) = max
x′:x→x′

f(x′).

We argue below that f ′ has the desired form.

Observe that depending on which features a data point x has, f can be decomposed into 2k subclassifiers, denoted {fF }F⊆[k].
The label of x is then determined in the following way: let Fx be the set of features possessed by x, i.e.,

Fx = {i ∈ [k] | xi 6= ∗}.

Then
f(x) = fFx

(x).

Moreover, observe that (1) fF effectively depends only on x|F (i.e., fF (x) = fF (x|F )), since fF only acts on those data
points where all features not in F are missing, and (2) without loss of generality, fF rejects any data point with a missing
feature i ∈ F , since fF never acts on a data point where such a feature i ∈ F is missing. Now consider how f ′ works on
a data point x. For any F ⊆ Fx, by dropping all features not in F , x can report x|F . Moreover, for any such F ⊆ Fx,
f(x|F ) = fF (x|F ). f ′ outputs 1 for x, iff there exists F ⊆ Fx, such that fF (x|F ) = 1. One can therefore write f ′ in the
following way: for any x ∈ X ,

f ′(x) = max
F⊆[k]

fF (x),

as desired.

Theorem 3. Let X̂ = {(xi, yi)}i∈[m] be m i.i.d. samples from D. For any f ∈ H̄, for any δ > 0, with probability at least

1− δ, we have `D(f) ≤ `X̂ (f) +O

(√
dn·log dn·logm+log(1/δ)

m

)
.

Proof. Recall that H̄ is defined as the set of all classifiers that can be written as the MAX Ensemble of n classifiers inH.
Given the classical VC inequality (e.g., Shalev-Shwartz & Ben-David, 2014, Theorem 6.11), we only need to bound the VC
dimension of H̄, and show that

dVC(H̄) = O(dn · log dn),

where d is the VC dimension ofH. To this end, observe that each f ∈ H̄ is essentially a decision tree with n+ 1 leaves,
where each leaf is associated with a binary label, and each internal node corresponds to a classifier inH. To be precise, f
can be computed in the following way: for any x ∈ X , if f1(x) = 1, then f(x) = 1; otherwise, if f2(x) = 1, then f(x) = 1,
etc. It is known (see, e.g., Daniely et al., 2015, Section 5.2) that the class of all such decision trees with n+ 1 leaves, which
is a superset of H̄, has VC dimension O(dn log dn). As a result, dVC(H) = O(dn log dn), and the theorem follows.

Theorem 4. Algorithm 1 converges.

Proof. Given f = MAX{ft
1,f

t
2,...,f

t
n}, consider a single update step for, say, f t1. As in Algorithm 1, define:

S1 = {(x, y) ∈ X̂ : f tj (x|Fj
) = 0,∀j 6= 1},

S−1 = S \ S1.

Then we perform the update as follows:

f t+1
1 = argminh∈H

∑
(x,y)∈S1

|h(x|F1)− y|.
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Let f ′ = MAX{ft+1
1 ,ft

2,...,f
t
n}

. Now, the loss calculated for f ′ is

`X̂ (f ′) =
1

m
(|S1| · `S1(f ′) + |S−1| · `S−1(f ′))

=
1

m
(|S1| · `S1(f t+1

1 ) + |S−1| · `S−1(f ′))

=
1

m
(|S1| · `S1

(f t+1
1 ) + |S−1| · `S−1

(f))

≤ 1

m
(|S1| · `S1

(f t1) + |S−1| · `S−1
(f))

= `X̂ (f).

The inequality in the above sequence of steps follows from the fact that f t+1
j accrues a lower loss on S1 than f tj by definition,

and that the classification outcomes for any (x, y) ∈ S−1 is the same for f and f ′.

If we treat `X̂ (f) as a potential function, we can see that it can only decrease with each step, and therefore, the algorithm
has to converge at some point.

C. Revelation Principle
There are many results in the literature on partial verification as to the validity of the revelation principle in various settings
(Green & Laffont, 1986; Yu, 2011; Kephart & Conitzer, 2015; 2016). For our purposes, as mentioned in Section 2, when the
reporting structure is given by a partial order, the revelation principle holds. Below we give a quick proof for why this is the
case in our setting.

Proposition 1. For any classifier f : X → {0, 1}, there is a truthful classifier f ′ such that after misreporting, f and f ′

output the same label for all x ∈ X , i.e.,

f ′(x) = max
x′:x→x′

f(x′).

Proof. Below we explicitly construct f ′. Let f ′ be such that for x ∈ X ,

f ′(x) = max
x′:x→x′

f(x).

Clearly f ′ and f output the same label after strategic manipulation. We only need to show f ′ is truthful, i.e., for any
x1, x2 ∈ X where x1 → x2, f ′(x1) ≥ f ′(x2). Let X1 = {x′ : x1 → x′} and X2 = {x′ : x2 → x′}. Recall that→ is
transitive and x1 → x2, so X1 ⊇ X2. Now we have

f ′(x1) = max
x∈X1

f(x) ≥ max
x∈X2

f(x) = f ′(x2).

D. Other observations
D.1. Regarding MINCUT

Naturally, the test error of MINCUT depends on X and m. For example, If X is discrete and small, one would expect that
MINCUT is almost optimal given enough samples. However, when X is large or even infinite, the generalization gap can be
extremely large. To see why this is true, consider the following example:

Example 2. Say we are given a feature space with two features, each of which can take any real value between 0 and 1.
Let the marginal distribution of D on X be the uniform distribution over X = {(x, y), (x, ∗), (∗, y) | x, y ∈ [0, 1]}. When
we see a new data point (x, y), unless we already have (x, y), (x, ∗) or (∗, y) in the set of samples (which happens with
probability 0), we know absolutely nothing about the label of (x, y), and therefore by no means we can expect f ′ to predict
the label of (x, y) correctly — in fact, f ′ will always assign label 0 to such a data point.
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D.2. On truthful classifiers and hill-climbing

Below, we make a few remarks regarding the generalization bound (Theorem 3) for HC.

• Observe that the generalization gap depends polynomially on the number of subclassifiers n. Without additional
restrictions, n can be as large as 2k leading to a gap which is exponential in k. This suggests that in practice, to achieve
any meaningful generalization guarantee, one has to restrict the number of subclassifiers used. In fact, we do run our
algorithm on a small set of features in Section 5.

• Recall that the class of linear classifiers in the k-dimensional Euclidean space has VC dimension k + 1. So, if we restrict
all subclassifiers to be linear, and require that the number of subclassifiers n to be constant, then Theorem 3 implies that
with high probability, the generalization gap is

Õ

(√
k

m

)
,

where k is the number of features, m is the number of samples, and Õ hides a logarithmic factor. Our algorithms are
practicable in this kind of regime.

E. Experiments
E.1. Implementation details

In our implementation, we use Python’s Scikit-learn (0.22.1) package (Pedregosa et al., 2011) of classifiers and other
machine learning packages whenever possible. The categorical features in the datasets are one-hot encoded. To help
ensure the convergence of gradient-based classifiers, we then standardize features by removing the mean and scaling to unit
variance.

For imputation-based classifiers, we use mean/mode imputation: mean for numerical and ordinal features, and mode for
categorical features. For reduced-feature-based classifiers, we default to reject if the test data point’s set of available features
was unseen in the training process. For classification methods involving Fayyad and Irani’s MDLP discretization algorithm,
we use a modified version of Discretization-MDLPC, licensed under GPL-38.

The performance of each classifier under each setting is evaluated with Nx2-fold cross-validation (Dietterich, 1998): training
on 50% of the data and testing on the remaining 50%; repeat N times. To tune the parameters for the classifiers, we perform
grid search over a subset of the parameter space considered by (Lessmann et al., 2015), in a 5-fold cross-validation on every
training set of the (outer) Nx2-cross-validation loop.

E.2. Additional experimental results

We evaluate our methods both with and without balancing the datasets through random undersampling. This is denoted
by “balanced datasets” when we undersample before training and testing, and “unbalanced datasets” when we do not.
Comparing Figure 1 and 2, it appears that there is no significant difference in relative accuracy across the various methods
when applied to balanced and imbalanced datasets. However, comparing, for example, Table 7 and 13, we observe that when
the dataset is unbalanced, classifiers based on imputation and reduced-feature modeling, when faced with strategic reporting,
tend to accept everything and yield a considerably high accuracy. Many other general issues regarding the use of accuracy as
a metric on unbalanced datasets are known (Japkowicz, 2000; Chawla et al., 2003; 2004). In practice, thresholding methods
are sometimes used to determine a proper threshold for binary prediction in such cases (Lessmann et al., 2015; Elkan, 2001).

Therefore, in addition to accuracy, we evaluate our approach with area under the receiver operating characteristic curve
(AUC). AUC becomes a useful metric when doing imbalanced classification because often a balance of false-positive and
false-negative rates is desired, and it is invariant to the threshold used in binary classification.9 For MINCUT, its receiver
operating characteristic curve is undefined because it does not output probabilistic predictions; for HILL-CLIMBING, we
take the maximum of the probabilistic predictions across all applicable classifiers to be the HILL-CLIMBING classifier’s
probabilistic prediction for a data point, and obtain AUC from that. From Table 23 to 28, we observe that HILL-CLIMBING

8Discretization-MDLPC codebase: https://github.com/navicto/Discretization-MDLPC.
9... although AUC’s global perspective assumes implicitly that all thresholds are equally probable. This is often criticized as not

plausible in credit scoring (Hand & Anagnostopoulos, 2013)

https://github.com/navicto/Discretization-MDLPC
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classifiers generally yield a AUC as good as, if not higher than, imputation- and reduced-feature-based classifiers on
imbalanced datasets (also Figure 4). The same holds for balanced datasets too (Figure 3).

For completeness, we also include the performance of classifiers based on imputation and reduced-feature modeling, with
discretization. As expected, common classifiers are generally less prone to overfitting than MINCUT, and discretizing the
feature space only limits their performance.

Figure 2. Selected classifier accuracy w/ strategic behavior, unbalanced datasets

Figure 3. Selected classifier AUC w/ strategic behavior, balanced datasets
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Figure 4. Selected classifier AUC w/ strategic behavior, unbalanced datasets
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Table 5. Our methods vs. the rest: mean classifier accuracy for ε = 0.0, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .858 .858 .686 .686 .739 .739 .685 .685
HC (LR) w/ disc. .856 .856 .679 .679 .753 .753 .695 .695
HC (ANN) .859 .859 .692 .692 .728 .728 .688 .688
HC (ANN) w/ disc. .849 .849 .683 .683 .754 .754 .696 .696
MINCUT .743 .743 .576 .576 .501 .501 .700 .700
MINCUT w/ disc. .852 .852 .658 .658 .748 .748 .701 .701
MAJ .746 .746 .579 .579 .501 .501 .701 .701
MAJ w/ disc. .854 .854 .653 .653 .749 .749 .701 .701
LR (Imputation) .861 .862 .692 .599 .738 .677 .688 .637
LR (Imputation) w/ disc. .859 .856 .682 .590 .757 .743 .695 .500
ANN (Imputation) .859 .859 .693 .600 .729 .664 .699 .576
ANN (Imputation) w/ disc. .849 .828 .683 .593 .757 .739 .697 .503
RF (Imputation) .820 .697 .651 .561 .748 .737 .701 .531
RF (Imputation) w/ disc. .855 .849 .668 .588 .750 .734 .702 .520
kNN (Imputation) .852 .802 .672 .584 .726 .649 .674 .515
kNN (Imputation) w/ disc. .850 .812 .669 .578 .742 .724 .675 .497
LR (Reduced Feature) .861 .861 .692 .692 .738 .738 .688 .688
LR (Reduced Feature) w/ disc. .859 .859 .682 .682 .757 .757 .695 .695
ANN (Reduced Feature) .859 .859 .693 .693 .729 .728 .699 .699
ANN (Reduced Feature) w/ disc. .849 .849 .684 .684 .756 .756 .697 .697
RF (Reduced Feature) .820 .820 .651 .651 .747 .748 .701 .701
RF (Reduced Feature) w/ disc. .855 .855 .668 .668 .750 .751 .702 .702
kNN (Reduced Feature) .852 .852 .672 .673 .727 .727 .674 .676
kNN (Reduced Feature) w/ disc. .848 .849 .667 .668 .736 .739 .673 .675

Table 6. Our methods vs. the rest: mean classifier accuracy for ε = 0.1, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .814 .814 .659 .659 .681 .681 .664 .664
HC (LR) w/ disc. .819 .819 .656 .656 .719 .719 .672 .672
HC (ANN) .803 .803 .647 .647 .664 .664 .665 .665
HC (ANN) w/ disc. .796 .796 .634 .634 .706 .706 .671 .671
MINCUT .770 .770 .584 .584 .502 .502 .673 .673
MINCUT w/ disc. .812 .812 .641 .641 .716 .716 .672 .672
MAJ .689 .725 .549 .536 .502 .502 .686 .565
MAJ w/ disc. .816 .679 .619 .544 .728 .601 .693 .564
LR (Imputation) .821 .821 .677 .593 .725 .667 .677 .627
LR (Imputation) w/ disc. .823 .796 .664 .594 .736 .675 .690 .556
ANN (Imputation) .822 .819 .678 .595 .718 .654 .692 .557
ANN (Imputation) w/ disc. .824 .772 .667 .596 .735 .678 .693 .559
RF (Imputation) .795 .658 .635 .560 .736 .655 .687 .541
RF (Imputation) w/ disc. .821 .779 .659 .594 .733 .664 .696 .545
kNN (Imputation) .818 .751 .653 .579 .713 .634 .662 .552
kNN (Imputation) w/ disc. .812 .755 .649 .580 .722 .651 .650 .538
LR (Reduced Feature) .828 .540 .651 .507 .696 .506 .674 .529
LR (Reduced Feature) w/ disc. .823 .530 .651 .512 .730 .517 .689 .530
ANN (Reduced Feature) .825 .541 .649 .507 .696 .505 .681 .520
ANN (Reduced Feature) w/ disc. .813 .536 .643 .513 .727 .515 .689 .524
RF (Reduced Feature) .793 .535 .625 .506 .720 .509 .687 .528
RF (Reduced Feature) w/ disc. .821 .538 .642 .512 .723 .516 .693 .524
kNN (Reduced Feature) .809 .527 .623 .505 .683 .506 .662 .524
kNN (Reduced Feature) w/ disc. .808 .524 .631 .511 .708 .514 .662 .523
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Table 7. Our methods vs. the rest: mean classifier accuracy for ε = 0.2, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .793 .793 .640 .640 .659 .659 .648 .648
HC (LR) w/ disc. .794 .794 .642 .642 .690 .690 .650 .650
HC (ANN) .774 .774 .625 .625 .640 .640 .647 .647
HC (ANN) w/ disc. .769 .769 .617 .617 .679 .679 .648 .648
MINCUT .768 .768 .581 .581 .500 .500 .652 .652
MINCUT w/ disc. .789 .789 .630 .630 .693 .693 .649 .649
MAJ .665 .670 .539 .524 .500 .500 .678 .560
MAJ w/ disc. .795 .618 .605 .533 .715 .565 .688 .566
LR (Imputation) .796 .788 .665 .579 .715 .662 .670 .619
LR (Imputation) w/ disc. .799 .762 .652 .577 .719 .631 .686 .541
ANN (Imputation) .798 .786 .665 .581 .704 .648 .686 .535
ANN (Imputation) w/ disc. .799 .747 .652 .577 .718 .635 .688 .542
RF (Imputation) .771 .630 .626 .561 .722 .603 .679 .549
RF (Imputation) w/ disc. .796 .744 .643 .575 .715 .620 .689 .542
kNN (Imputation) .791 .722 .638 .566 .694 .626 .662 .560
kNN (Imputation) w/ disc. .786 .704 .628 .572 .696 .606 .655 .563
LR (Reduced Feature) .809 .544 .632 .508 .669 .510 .666 .592
LR (Reduced Feature) w/ disc. .796 .542 .633 .516 .708 .522 .684 .587
ANN (Reduced Feature) .806 .542 .629 .509 .661 .509 .668 .546
ANN (Reduced Feature) w/ disc. .792 .544 .629 .514 .707 .521 .684 .541
RF (Reduced Feature) .779 .537 .611 .507 .698 .518 .679 .574
RF (Reduced Feature) w/ disc. .799 .546 .625 .515 .706 .525 .687 .585
kNN (Reduced Feature) .781 .531 .604 .505 .655 .510 .658 .586
kNN (Reduced Feature) w/ disc. .775 .538 .618 .512 .684 .519 .651 .587

Table 8. Our methods vs. the rest: mean classifier accuracy for ε = 0.3, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .771 .771 .626 .626 .642 .642 .636 .636
HC (LR) w/ disc. .770 .770 .630 .630 .670 .670 .639 .639
HC (ANN) .753 .753 .611 .611 .621 .621 .636 .636
HC (ANN) w/ disc. .748 .748 .598 .598 .658 .658 .638 .638
MINCUT .751 .751 .579 .579 .501 .501 .638 .638
MINCUT w/ disc. .770 .770 .620 .620 .671 .671 .638 .638
MAJ .651 .653 .531 .524 .501 .498 .668 .559
MAJ w/ disc. .775 .615 .592 .535 .701 .556 .680 .561
LR (Imputation) .773 .757 .651 .580 .700 .651 .660 .604
LR (Imputation) w/ disc. .770 .731 .637 .589 .709 .602 .680 .525
ANN (Imputation) .775 .752 .652 .583 .691 .635 .677 .521
ANN (Imputation) w/ disc. .770 .716 .638 .588 .707 .608 .682 .528
RF (Imputation) .749 .626 .609 .556 .706 .564 .669 .553
RF (Imputation) w/ disc. .771 .718 .629 .584 .707 .596 .681 .535
kNN (Imputation) .765 .664 .623 .565 .681 .611 .651 .560
kNN (Imputation) w/ disc. .759 .674 .608 .569 .689 .586 .641 .557
LR (Reduced Feature) .787 .582 .608 .512 .650 .521 .654 .612
LR (Reduced Feature) w/ disc. .776 .575 .616 .522 .698 .550 .678 .601
ANN (Reduced Feature) .783 .575 .606 .512 .647 .514 .656 .570
ANN (Reduced Feature) w/ disc. .776 .593 .612 .518 .695 .545 .676 .557
RF (Reduced Feature) .760 .578 .592 .512 .684 .542 .669 .592
RF (Reduced Feature) w/ disc. .782 .607 .609 .523 .702 .558 .679 .599
kNN (Reduced Feature) .768 .573 .582 .509 .647 .530 .651 .598
kNN (Reduced Feature) w/ disc. .759 .581 .599 .521 .681 .543 .653 .599
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Table 9. Our methods vs. the rest: mean classifier accuracy for ε = 0.4, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .752 .752 .611 .611 .626 .626 .628 .628
HC (LR) w/ disc. .748 .748 .618 .618 .649 .649 .629 .629
HC (ANN) .731 .731 .593 .593 .602 .602 .628 .628
HC (ANN) w/ disc. .726 .726 .586 .586 .640 .640 .627 .627
MINCUT .727 .727 .575 .575 .500 .500 .626 .626
MINCUT w/ disc. .746 .746 .611 .611 .648 .648 .626 .626
MAJ .650 .633 .533 .524 .500 .500 .659 .555
MAJ w/ disc. .760 .610 .583 .535 .690 .563 .671 .557
LR (Imputation) .757 .732 .634 .579 .688 .644 .648 .601
LR (Imputation) w/ disc. .741 .689 .622 .577 .680 .576 .671 .515
ANN (Imputation) .759 .727 .635 .580 .676 .624 .668 .512
ANN (Imputation) w/ disc. .742 .676 .622 .578 .679 .582 .672 .518
RF (Imputation) .728 .633 .603 .561 .685 .558 .660 .554
RF (Imputation) w/ disc. .741 .673 .614 .575 .678 .572 .671 .517
kNN (Imputation) .744 .630 .606 .560 .663 .576 .641 .554
kNN (Imputation) w/ disc. .729 .639 .591 .561 .659 .571 .641 .550
LR (Reduced Feature) .771 .628 .591 .524 .628 .540 .641 .615
LR (Reduced Feature) w/ disc. .762 .642 .598 .527 .684 .579 .670 .602
ANN (Reduced Feature) .766 .616 .587 .522 .620 .523 .643 .603
ANN (Reduced Feature) w/ disc. .758 .636 .587 .520 .677 .560 .669 .597
RF (Reduced Feature) .746 .622 .582 .523 .661 .560 .660 .598
RF (Reduced Feature) w/ disc. .767 .667 .594 .527 .685 .580 .670 .602
kNN (Reduced Feature) .754 .624 .571 .518 .629 .558 .640 .600
kNN (Reduced Feature) w/ disc. .747 .642 .585 .528 .666 .577 .639 .601

Table 10. Our methods vs. the rest: mean classifier accuracy for ε = 0.5, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .726 .726 .597 .597 .612 .612 .615 .615
HC (LR) w/ disc. .720 .720 .601 .601 .638 .638 .616 .616
HC (ANN) .709 .709 .578 .578 .587 .587 .615 .615
HC (ANN) w/ disc. .702 .702 .570 .570 .626 .626 .615 .615
MINCUT .707 .707 .572 .572 .500 .500 .613 .613
MINCUT w/ disc. .720 .720 .597 .597 .632 .632 .612 .612
MAJ .649 .615 .535 .527 .500 .498 .646 .551
MAJ w/ disc. .734 .606 .572 .533 .667 .568 .657 .552
LR (Imputation) .734 .706 .616 .571 .670 .630 .636 .584
LR (Imputation) w/ disc. .708 .641 .604 .565 .648 .562 .659 .507
ANN (Imputation) .735 .699 .617 .570 .658 .605 .655 .505
ANN (Imputation) w/ disc. .709 .631 .602 .563 .647 .565 .659 .512
RF (Imputation) .705 .634 .588 .555 .660 .552 .647 .549
RF (Imputation) w/ disc. .708 .633 .597 .562 .649 .560 .657 .511
kNN (Imputation) .720 .628 .588 .552 .646 .570 .625 .545
kNN (Imputation) w/ disc. .692 .606 .574 .543 .622 .546 .623 .546
LR (Reduced Feature) .744 .660 .572 .532 .612 .559 .626 .611
LR (Reduced Feature) w/ disc. .737 .666 .586 .525 .664 .589 .657 .604
ANN (Reduced Feature) .735 .641 .569 .530 .599 .531 .624 .604
ANN (Reduced Feature) w/ disc. .731 .649 .570 .515 .655 .567 .654 .596
RF (Reduced Feature) .723 .650 .567 .534 .635 .569 .647 .600
RF (Reduced Feature) w/ disc. .743 .682 .584 .523 .666 .584 .657 .604
kNN (Reduced Feature) .731 .659 .555 .528 .618 .577 .627 .599
kNN (Reduced Feature) w/ disc. .723 .668 .572 .527 .651 .585 .627 .599
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Table 11. Our methods vs. the rest: mean classifier accuracy for ε = 0.0, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .848 .848 .736 .736 .931 .931 .808 .808
HC (LR) w/ disc. .848 .848 .730 .730 .931 .931 .819 .819
HC (ANN) .850 .850 .740 .740 .931 .931 .819 .819
HC (ANN) w/ disc. .848 .848 .730 .730 .931 .931 .819 .819
MINCUT .740 .740 .567 .567 .085 .085 .818 .818
MINCUT w/ disc. .845 .845 .696 .696 .929 .929 .819 .819
MAJ .738 .738 .553 .553 .085 .085 .818 .818
MAJ w/ disc. .847 .847 .686 .686 .928 .928 .819 .819
LR (Imputation) .853 .821 .744 .701 .930 .931 .808 .779
LR (Imputation) w/ disc. .850 .797 .731 .700 .932 .931 .820 .779
ANN (Imputation) .849 .816 .744 .701 .930 .931 .819 .779
ANN (Imputation) w/ disc. .848 .774 .730 .700 .932 .931 .820 .779
RF (Imputation) .818 .635 .705 .701 .929 .931 .818 .779
RF (Imputation) w/ disc. .846 .790 .719 .700 .930 .931 .819 .779
kNN (Imputation) .845 .745 .727 .701 .931 .931 .810 .775
kNN (Imputation) w/ disc. .840 .747 .716 .699 .930 .920 .811 .769
LR (Reduced Feature) .853 .853 .744 .744 .930 .930 .808 .808
LR (Reduced Feature) w/ disc. .850 .850 .731 .731 .932 .932 .820 .820
ANN (Reduced Feature) .850 .850 .745 .744 .930 .930 .819 .819
ANN (Reduced Feature) w/ disc. .848 .848 .729 .730 .931 .931 .820 .820
RF (Reduced Feature) .818 .818 .705 .706 .929 .929 .818 .818
RF (Reduced Feature) w/ disc. .846 .847 .719 .719 .930 .930 .819 .819
kNN (Reduced Feature) .845 .845 .728 .728 .931 .931 .811 .810
kNN (Reduced Feature) w/ disc. .843 .841 .717 .717 .930 .931 .810 .807

Table 12. Our methods vs. the rest: mean classifier accuracy for ε = 0.1, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .814 .814 .708 .708 .930 .930 .803 .803
HC (LR) w/ disc. .818 .818 .701 .701 .929 .929 .804 .804
HC (ANN) .799 .799 .699 .699 .930 .930 .803 .803
HC (ANN) w/ disc. .797 .797 .693 .693 .930 .930 .802 .802
MINCUT .769 .769 .606 .606 .080 .080 .802 .802
MINCUT w/ disc. .811 .811 .686 .686 .928 .928 .804 .804
MAJ .677 .734 .489 .637 .077 .145 .811 .782
MAJ w/ disc. .814 .703 .643 .686 .922 .929 .815 .782
LR (Imputation) .818 .777 .735 .701 .930 .930 .805 .779
LR (Imputation) w/ disc. .826 .747 .723 .700 .930 .929 .816 .779
ANN (Imputation) .822 .771 .735 .701 .930 .930 .815 .779
ANN (Imputation) w/ disc. .827 .737 .722 .700 .930 .929 .817 .779
RF (Imputation) .794 .640 .696 .700 .928 .930 .813 .779
RF (Imputation) w/ disc. .823 .735 .708 .700 .928 .929 .817 .779
kNN (Imputation) .813 .704 .719 .700 .930 .930 .808 .779
kNN (Imputation) w/ disc. .814 .698 .707 .696 .927 .929 .808 .779
LR (Reduced Feature) .825 .570 .715 .697 .929 .930 .806 .779
LR (Reduced Feature) w/ disc. .818 .572 .713 .697 .929 .929 .817 .779
ANN (Reduced Feature) .823 .571 .715 .697 .930 .930 .811 .779
ANN (Reduced Feature) w/ disc. .818 .577 .711 .697 .929 .929 .814 .779
RF (Reduced Feature) .795 .570 .687 .697 .927 .930 .813 .779
RF (Reduced Feature) w/ disc. .817 .578 .698 .697 .926 .929 .816 .779
kNN (Reduced Feature) .807 .563 .701 .697 .930 .930 .808 .779
kNN (Reduced Feature) w/ disc. .804 .565 .699 .697 .927 .929 .809 .779
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Table 13. Our methods vs. the rest: mean classifier accuracy for ε = 0.2, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .796 .796 .694 .694 .929 .929 .800 .800
HC (LR) w/ disc. .794 .794 .688 .688 .929 .929 .800 .800
HC (ANN) .779 .779 .682 .682 .930 .930 .800 .800
HC (ANN) w/ disc. .771 .771 .686 .686 .930 .930 .800 .800
MINCUT .769 .769 .621 .621 .078 .078 .798 .798
MINCUT w/ disc. .794 .794 .678 .678 .929 .929 .800 .800
MAJ .652 .700 .471 .678 .074 .565 .809 .780
MAJ w/ disc. .798 .648 .631 .694 .922 .931 .814 .781
LR (Imputation) .803 .742 .728 .700 .930 .931 .802 .779
LR (Imputation) w/ disc. .799 .711 .718 .700 .930 .930 .813 .779
ANN (Imputation) .806 .731 .727 .700 .931 .931 .813 .779
ANN (Imputation) w/ disc. .798 .700 .716 .700 .930 .930 .814 .779
RF (Imputation) .775 .627 .690 .700 .928 .931 .811 .780
RF (Imputation) w/ disc. .797 .693 .706 .700 .929 .930 .814 .779
kNN (Imputation) .792 .678 .711 .699 .930 .931 .807 .780
kNN (Imputation) w/ disc. .789 .672 .698 .695 .928 .930 .801 .778
LR (Reduced Feature) .807 .577 .701 .696 .929 .930 .803 .779
LR (Reduced Feature) w/ disc. .797 .567 .705 .698 .928 .929 .813 .780
ANN (Reduced Feature) .805 .576 .699 .696 .930 .930 .806 .778
ANN (Reduced Feature) w/ disc. .794 .576 .701 .698 .929 .929 .809 .778
RF (Reduced Feature) .780 .578 .675 .696 .924 .928 .810 .782
RF (Reduced Feature) w/ disc. .798 .577 .689 .698 .925 .929 .813 .785
kNN (Reduced Feature) .782 .567 .691 .696 .929 .929 .806 .781
kNN (Reduced Feature) w/ disc. .780 .566 .693 .697 .928 .929 .806 .782

Table 14. Our methods vs. the rest: mean classifier accuracy for ε = 0.3, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .775 .775 .685 .685 .923 .923 .796 .796
HC (LR) w/ disc. .771 .771 .682 .682 .923 .923 .796 .796
HC (ANN) .755 .755 .673 .673 .923 .923 .796 .796
HC (ANN) w/ disc. .747 .747 .692 .692 .923 .923 .796 .796
MINCUT .746 .746 .634 .634 .079 .079 .793 .793
MINCUT w/ disc. .772 .772 .676 .676 .930 .930 .796 .796
MAJ .642 .659 .476 .692 .079 .728 .807 .780
MAJ w/ disc. .784 .630 .631 .698 .923 .930 .811 .781
LR (Imputation) .783 .709 .723 .701 .930 .930 .799 .779
LR (Imputation) w/ disc. .773 .672 .710 .699 .930 .930 .809 .779
ANN (Imputation) .784 .695 .722 .701 .930 .930 .808 .779
ANN (Imputation) w/ disc. .772 .661 .709 .699 .931 .930 .812 .779
RF (Imputation) .754 .616 .688 .701 .926 .930 .809 .780
RF (Imputation) w/ disc. .774 .659 .700 .699 .929 .930 .811 .779
kNN (Imputation) .770 .636 .704 .697 .930 .930 .804 .779
kNN (Imputation) w/ disc. .763 .640 .693 .688 .928 .927 .801 .775
LR (Reduced Feature) .791 .604 .688 .693 .923 .923 .797 .776
LR (Reduced Feature) w/ disc. .783 .595 .697 .696 .923 .923 .807 .780
ANN (Reduced Feature) .788 .601 .689 .693 .923 .923 .797 .775
ANN (Reduced Feature) w/ disc. .780 .615 .696 .696 .923 .923 .802 .774
RF (Reduced Feature) .765 .610 .666 .692 .915 .920 .804 .782
RF (Reduced Feature) w/ disc. .784 .632 .683 .695 .920 .923 .806 .783
kNN (Reduced Feature) .771 .598 .685 .692 .923 .923 .800 .780
kNN (Reduced Feature) w/ disc. .768 .600 .686 .695 .922 .923 .798 .777
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Table 15. Our methods vs. the rest: mean classifier accuracy for ε = 0.4, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .756 .756 .673 .673 .908 .908 .786 .786
HC (LR) w/ disc. .750 .750 .686 .686 .908 .908 .787 .787
HC (ANN) .733 .733 .669 .669 .909 .909 .787 .787
HC (ANN) w/ disc. .725 .725 .694 .694 .909 .909 .787 .787
MINCUT .725 .725 .633 .633 .079 .079 .778 .778
MINCUT w/ disc. .748 .748 .685 .685 .931 .931 .785 .785
MAJ .645 .632 .500 .697 .093 .823 .803 .779
MAJ w/ disc. .767 .618 .640 .699 .924 .931 .808 .780
LR (Imputation) .763 .677 .716 .700 .931 .931 .796 .779
LR (Imputation) w/ disc. .749 .636 .708 .701 .929 .930 .807 .779
ANN (Imputation) .763 .657 .715 .700 .931 .931 .804 .779
ANN (Imputation) w/ disc. .748 .628 .707 .701 .930 .930 .809 .779
RF (Imputation) .736 .603 .685 .700 .924 .931 .805 .779
RF (Imputation) w/ disc. .749 .626 .700 .701 .929 .930 .808 .780
kNN (Imputation) .748 .616 .696 .692 .930 .931 .801 .779
kNN (Imputation) w/ disc. .735 .627 .687 .682 .926 .930 .800 .761
LR (Reduced Feature) .775 .644 .675 .686 .908 .909 .785 .767
LR (Reduced Feature) w/ disc. .764 .631 .694 .697 .908 .908 .795 .777
ANN (Reduced Feature) .768 .629 .675 .686 .909 .909 .782 .765
ANN (Reduced Feature) w/ disc. .761 .639 .694 .697 .908 .908 .790 .767
RF (Reduced Feature) .750 .648 .654 .682 .896 .901 .791 .775
RF (Reduced Feature) w/ disc. .770 .670 .683 .696 .905 .908 .794 .778
kNN (Reduced Feature) .755 .647 .674 .684 .908 .908 .787 .772
kNN (Reduced Feature) w/ disc. .755 .649 .681 .695 .907 .908 .787 .772

Table 16. Our methods vs. the rest: mean classifier accuracy for ε = 0.5, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .729 .729 .660 .660 .877 .877 .764 .764
HC (LR) w/ disc. .723 .723 .692 .692 .879 .879 .765 .765
HC (ANN) .713 .713 .663 .663 .877 .877 .765 .765
HC (ANN) w/ disc. .705 .705 .694 .694 .879 .879 .765 .765
MINCUT .714 .714 .647 .647 .095 .095 .752 .752
MINCUT w/ disc. .724 .724 .696 .696 .930 .930 .770 .770
MAJ .643 .615 .531 .699 .125 .879 .800 .779
MAJ w/ disc. .744 .608 .649 .699 .924 .931 .805 .780
LR (Imputation) .736 .628 .710 .700 .930 .931 .793 .779
LR (Imputation) w/ disc. .719 .601 .703 .701 .930 .931 .804 .779
ANN (Imputation) .734 .614 .709 .700 .930 .931 .802 .779
ANN (Imputation) w/ disc. .720 .595 .702 .701 .931 .931 .804 .779
RF (Imputation) .711 .592 .683 .700 .920 .931 .803 .779
RF (Imputation) w/ disc. .721 .598 .698 .701 .930 .931 .804 .779
kNN (Imputation) .723 .602 .688 .690 .929 .929 .797 .777
kNN (Imputation) w/ disc. .702 .597 .677 .679 .929 .931 .796 .774
LR (Reduced Feature) .749 .668 .657 .670 .876 .877 .761 .747
LR (Reduced Feature) w/ disc. .744 .669 .689 .696 .877 .877 .770 .758
ANN (Reduced Feature) .740 .648 .657 .670 .877 .877 .756 .746
ANN (Reduced Feature) w/ disc. .735 .651 .692 .696 .877 .877 .765 .748
RF (Reduced Feature) .729 .668 .639 .665 .861 .865 .768 .757
RF (Reduced Feature) w/ disc. .748 .689 .678 .695 .875 .877 .770 .759
kNN (Reduced Feature) .732 .670 .654 .666 .876 .877 .764 .751
kNN (Reduced Feature) w/ disc. .730 .677 .673 .689 .876 .877 .765 .753
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Table 17. Our methods vs. the rest: mean classifier AUC for ε = 0.0, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .906 .906 .739 .739 .807 .807 .696 .696
HC (LR) w/ disc. .911 .911 .732 .732 .813 .813 .729 .729
HC (ANN) .908 .908 .753 .753 .799 .799 .701 .701
HC (ANN) w/ disc. .910 .910 .735 .735 .815 .815 .731 .731
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .906 .905 .756 .717 .805 .776 .704 .667
LR (Imputation) w/ disc. .910 .897 .739 .686 .819 .796 .731 .587
ANN (Imputation) .907 .905 .757 .717 .801 .771 .732 .683
ANN (Imputation) w/ disc. .910 .897 .742 .690 .818 .795 .731 .587
RF (Imputation) .885 .876 .709 .659 .819 .811 .734 .582
RF (Imputation) w/ disc. .911 .899 .712 .665 .811 .790 .731 .529
kNN (Imputation) .905 .874 .717 .663 .794 .772 .716 .636
kNN (Imputation) w/ disc. .903 .886 .715 .651 .804 .782 .713 .525
LR (Reduced Feature) .906 .906 .756 .756 .805 .805 .704 .704
LR (Reduced Feature) w/ disc. .910 .910 .739 .739 .819 .819 .731 .731
ANN (Reduced Feature) .907 .907 .757 .757 .801 .801 .731 .732
ANN (Reduced Feature) w/ disc. .910 .910 .742 .742 .818 .818 .731 .731
RF (Reduced Feature) .885 .885 .709 .708 .819 .819 .734 .734
RF (Reduced Feature) w/ disc. .911 .911 .712 .712 .811 .811 .731 .731
kNN (Reduced Feature) .905 .905 .718 .718 .795 .794 .716 .716
kNN (Reduced Feature) w/ disc. .903 .903 .714 .715 .803 .804 .713 .715

Table 18. Our methods vs. the rest: mean classifier AUC for ε = 0.1, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .889 .889 .704 .704 .752 .752 .674 .674
HC (LR) w/ disc. .889 .889 .702 .702 .774 .774 .705 .705
HC (ANN) .886 .886 .708 .708 .731 .731 .682 .682
HC (ANN) w/ disc. .877 .877 .681 .681 .766 .766 .706 .706
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .893 .888 .738 .701 .792 .759 .695 .661
LR (Imputation) w/ disc. .894 .860 .720 .676 .800 .755 .725 .677
ANN (Imputation) .894 .888 .739 .702 .787 .753 .722 .678
ANN (Imputation) w/ disc. .893 .860 .724 .679 .800 .757 .726 .677
RF (Imputation) .866 .850 .688 .656 .806 .774 .717 .633
RF (Imputation) w/ disc. .894 .857 .695 .660 .791 .739 .725 .663
kNN (Imputation) .886 .860 .699 .659 .778 .748 .708 .664
kNN (Imputation) w/ disc. .886 .849 .691 .640 .780 .719 .701 .596
LR (Reduced Feature) .881 .798 .697 .610 .758 .588 .693 .548
LR (Reduced Feature) w/ disc. .885 .786 .701 .618 .790 .658 .724 .582
ANN (Reduced Feature) .878 .820 .688 .626 .758 .633 .706 .589
ANN (Reduced Feature) w/ disc. .876 .818 .688 .630 .786 .695 .724 .632
RF (Reduced Feature) .860 .799 .674 .612 .789 .664 .717 .595
RF (Reduced Feature) w/ disc. .880 .804 .680 .631 .777 .683 .722 .578
kNN (Reduced Feature) .871 .795 .663 .599 .744 .651 .707 .647
kNN (Reduced Feature) w/ disc. .872 .788 .677 .616 .767 .690 .703 .638
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Table 19. Our methods vs. the rest: mean classifier AUC for ε = 0.2, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .874 .874 .677 .677 .726 .726 .662 .662
HC (LR) w/ disc. .870 .870 .679 .679 .747 .747 .693 .693
HC (ANN) .865 .865 .675 .675 .701 .701 .670 .670
HC (ANN) w/ disc. .849 .849 .654 .654 .735 .735 .691 .691
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .879 .868 .719 .680 .781 .745 .690 .657
LR (Imputation) w/ disc. .876 .833 .700 .656 .780 .712 .721 .682
ANN (Imputation) .879 .868 .721 .681 .774 .738 .714 .673
ANN (Imputation) w/ disc. .875 .832 .704 .658 .778 .713 .721 .682
RF (Imputation) .850 .823 .669 .641 .788 .733 .709 .638
RF (Imputation) w/ disc. .875 .831 .679 .643 .771 .702 .720 .671
kNN (Imputation) .869 .842 .681 .640 .757 .726 .702 .655
kNN (Imputation) w/ disc. .863 .816 .670 .628 .756 .676 .698 .619
LR (Reduced Feature) .866 .778 .668 .600 .726 .591 .687 .630
LR (Reduced Feature) w/ disc. .863 .750 .678 .615 .765 .632 .717 .664
ANN (Reduced Feature) .863 .804 .662 .609 .724 .639 .694 .635
ANN (Reduced Feature) w/ disc. .857 .796 .670 .623 .760 .677 .717 .666
RF (Reduced Feature) .846 .777 .651 .593 .762 .645 .708 .646
RF (Reduced Feature) w/ disc. .857 .787 .661 .629 .755 .660 .716 .657
kNN (Reduced Feature) .845 .749 .636 .568 .706 .622 .700 .659
kNN (Reduced Feature) w/ disc. .840 .735 .656 .597 .741 .657 .696 .660

Table 20. Our methods vs. the rest: mean classifier AUC for ε = 0.3, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .855 .855 .658 .658 .704 .704 .653 .653
HC (LR) w/ disc. .848 .848 .660 .660 .724 .724 .676 .676
HC (ANN) .843 .843 .652 .652 .674 .674 .657 .657
HC (ANN) w/ disc. .826 .826 .628 .628 .709 .709 .679 .679
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .861 .842 .704 .667 .768 .727 .685 .649
LR (Imputation) w/ disc. .855 .793 .683 .648 .765 .682 .716 .674
ANN (Imputation) .862 .842 .706 .668 .761 .720 .704 .663
ANN (Imputation) w/ disc. .853 .793 .685 .649 .762 .681 .716 .675
RF (Imputation) .828 .794 .650 .629 .770 .694 .700 .652
RF (Imputation) w/ disc. .854 .793 .663 .637 .760 .679 .714 .671
kNN (Imputation) .849 .809 .664 .623 .740 .702 .692 .641
kNN (Imputation) w/ disc. .841 .776 .647 .618 .739 .652 .686 .618
LR (Reduced Feature) .848 .775 .643 .595 .704 .609 .679 .636
LR (Reduced Feature) w/ disc. .843 .749 .658 .611 .752 .651 .709 .670
ANN (Reduced Feature) .844 .791 .640 .599 .707 .638 .682 .634
ANN (Reduced Feature) w/ disc. .839 .785 .650 .613 .749 .672 .708 .667
RF (Reduced Feature) .828 .756 .628 .588 .739 .647 .697 .652
RF (Reduced Feature) w/ disc. .841 .776 .647 .623 .746 .666 .708 .669
kNN (Reduced Feature) .825 .742 .610 .562 .691 .628 .690 .649
kNN (Reduced Feature) w/ disc. .819 .730 .632 .596 .728 .651 .689 .650
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Table 21. Our methods vs. the rest: mean classifier AUC for ε = 0.4, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .828 .828 .640 .640 .681 .681 .644 .644
HC (LR) w/ disc. .819 .819 .641 .641 .694 .694 .663 .663
HC (ANN) .809 .809 .626 .626 .647 .647 .647 .647
HC (ANN) w/ disc. .794 .794 .604 .604 .684 .684 .664 .664
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .844 .813 .686 .652 .754 .709 .680 .641
LR (Imputation) w/ disc. .828 .761 .664 .629 .737 .645 .707 .661
ANN (Imputation) .844 .813 .688 .652 .745 .704 .696 .652
ANN (Imputation) w/ disc. .828 .761 .665 .629 .735 .644 .707 .661
RF (Imputation) .808 .766 .640 .619 .746 .679 .692 .650
RF (Imputation) w/ disc. .829 .761 .646 .619 .732 .643 .705 .658
kNN (Imputation) .827 .775 .642 .611 .719 .675 .682 .625
kNN (Imputation) w/ disc. .816 .741 .624 .599 .718 .622 .679 .610
LR (Reduced Feature) .825 .780 .622 .596 .677 .623 .667 .631
LR (Reduced Feature) w/ disc. .821 .766 .638 .611 .732 .672 .694 .661
ANN (Reduced Feature) .820 .780 .618 .594 .676 .624 .667 .633
ANN (Reduced Feature) w/ disc. .818 .778 .630 .603 .729 .671 .693 .661
RF (Reduced Feature) .804 .751 .613 .593 .705 .647 .684 .649
RF (Reduced Feature) w/ disc. .820 .782 .630 .617 .729 .676 .693 .661
kNN (Reduced Feature) .805 .745 .591 .570 .666 .634 .676 .639
kNN (Reduced Feature) w/ disc. .803 .746 .616 .593 .710 .661 .675 .637

Table 22. Our methods vs. the rest: mean classifier AUC for ε = 0.5, balanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .788 .788 .616 .616 .657 .657 .630 .630
HC (LR) w/ disc. .780 .780 .618 .618 .671 .671 .645 .645
HC (ANN) .773 .773 .600 .600 .624 .624 .632 .632
HC (ANN) w/ disc. .762 .762 .581 .581 .662 .662 .645 .645
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .819 .779 .663 .628 .735 .687 .672 .630
LR (Imputation) w/ disc. .791 .711 .642 .607 .699 .613 .695 .643
ANN (Imputation) .819 .779 .665 .629 .728 .682 .684 .637
ANN (Imputation) w/ disc. .790 .710 .639 .605 .695 .613 .695 .643
RF (Imputation) .782 .735 .622 .602 .720 .656 .681 .640
RF (Imputation) w/ disc. .791 .710 .628 .601 .697 .613 .694 .642
kNN (Imputation) .797 .744 .620 .593 .703 .652 .667 .609
kNN (Imputation) w/ disc. .774 .693 .605 .578 .673 .585 .664 .589
LR (Reduced Feature) .787 .765 .594 .586 .652 .621 .649 .621
LR (Reduced Feature) w/ disc. .779 .750 .623 .598 .705 .658 .672 .645
ANN (Reduced Feature) .781 .755 .590 .580 .647 .609 .647 .621
ANN (Reduced Feature) w/ disc. .777 .751 .607 .579 .701 .652 .670 .642
RF (Reduced Feature) .768 .730 .589 .582 .669 .635 .663 .636
RF (Reduced Feature) w/ disc. .786 .759 .619 .600 .704 .660 .672 .644
kNN (Reduced Feature) .770 .738 .570 .567 .646 .632 .656 .624
kNN (Reduced Feature) w/ disc. .765 .739 .598 .583 .687 .639 .655 .624
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Table 23. Our methods vs. the rest: mean classifier AUC for ε = 0.0, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .907 .907 .723 .723 .728 .728 .705 .705
HC (LR) w/ disc. .911 .911 .739 .739 .798 .798 .730 .730
HC (ANN) .908 .908 .746 .746 .804 .804 .731 .731
HC (ANN) w/ disc. .910 .910 .747 .747 .818 .818 .730 .730
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .907 .895 .761 .679 .766 .579 .705 .634
LR (Imputation) w/ disc. .910 .866 .744 .643 .826 .620 .731 .587
ANN (Imputation) .908 .895 .762 .680 .809 .728 .737 .654
ANN (Imputation) w/ disc. .910 .866 .747 .646 .827 .622 .732 .587
RF (Imputation) .886 .841 .711 .579 .814 .704 .736 .541
RF (Imputation) w/ disc. .911 .822 .717 .604 .806 .550 .732 .523
kNN (Imputation) .906 .831 .725 .567 .758 .530 .709 .535
kNN (Imputation) w/ disc. .905 .825 .710 .567 .761 .491 .706 .491
LR (Reduced Feature) .907 .907 .761 .761 .766 .766 .705 .705
LR (Reduced Feature) w/ disc. .910 .910 .744 .744 .826 .826 .731 .731
ANN (Reduced Feature) .908 .908 .763 .762 .810 .810 .737 .736
ANN (Reduced Feature) w/ disc. .910 .910 .747 .747 .827 .827 .732 .732
RF (Reduced Feature) .886 .886 .711 .711 .814 .814 .736 .736
RF (Reduced Feature) w/ disc. .911 .911 .717 .717 .806 .807 .732 .732
kNN (Reduced Feature) .906 .906 .724 .725 .759 .758 .709 .710
kNN (Reduced Feature) w/ disc. .905 .904 .709 .710 .763 .762 .706 .708

Table 24. Our methods vs. the rest: mean classifier AUC for ε = 0.1, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .891 .891 .683 .683 .651 .651 .655 .655
HC (LR) w/ disc. .890 .890 .687 .687 .713 .713 .680 .680
HC (ANN) .886 .886 .691 .691 .684 .684 .673 .673
HC (ANN) w/ disc. .876 .876 .671 .671 .742 .742 .687 .687
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .893 .874 .741 .666 .760 .658 .694 .596
LR (Imputation) w/ disc. .894 .834 .723 .633 .806 .643 .732 .678
ANN (Imputation) .893 .874 .743 .667 .802 .722 .724 .599
ANN (Imputation) w/ disc. .892 .835 .726 .635 .809 .643 .733 .678
RF (Imputation) .865 .828 .685 .592 .799 .654 .720 .626
RF (Imputation) w/ disc. .893 .821 .696 .605 .793 .595 .733 .673
kNN (Imputation) .886 .829 .703 .586 .742 .539 .704 .632
kNN (Imputation) w/ disc. .883 .800 .682 .575 .749 .517 .703 .576
LR (Reduced Feature) .885 .799 .709 .616 .749 .580 .696 .539
LR (Reduced Feature) w/ disc. .886 .788 .710 .638 .797 .708 .725 .565
ANN (Reduced Feature) .883 .826 .707 .627 .771 .685 .714 .607
ANN (Reduced Feature) w/ disc. .883 .827 .704 .641 .786 .739 .726 .671
RF (Reduced Feature) .863 .798 .679 .621 .783 .554 .720 .565
RF (Reduced Feature) w/ disc. .880 .802 .685 .637 .756 .605 .724 .539
kNN (Reduced Feature) .874 .796 .678 .616 .727 .529 .703 .633
kNN (Reduced Feature) w/ disc. .872 .795 .681 .628 .738 .537 .701 .619
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Table 25. Our methods vs. the rest: mean classifier AUC for ε = 0.2, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .876 .876 .662 .662 .627 .627 .642 .642
HC (LR) w/ disc. .872 .872 .669 .669 .683 .683 .676 .676
HC (ANN) .866 .866 .655 .655 .677 .677 .654 .654
HC (ANN) w/ disc. .854 .854 .639 .639 .703 .703 .679 .679
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .880 .854 .722 .653 .758 .684 .684 .577
LR (Imputation) w/ disc. .874 .798 .704 .621 .796 .653 .724 .670
ANN (Imputation) .880 .854 .724 .654 .790 .711 .710 .579
ANN (Imputation) w/ disc. .873 .798 .707 .621 .799 .651 .726 .670
RF (Imputation) .850 .794 .665 .603 .781 .598 .711 .639
RF (Imputation) w/ disc. .873 .795 .681 .603 .786 .631 .725 .666
kNN (Imputation) .870 .812 .681 .587 .728 .538 .697 .634
kNN (Imputation) w/ disc. .862 .773 .661 .572 .737 .523 .692 .576
LR (Reduced Feature) .870 .781 .680 .600 .739 .610 .690 .633
LR (Reduced Feature) w/ disc. .866 .759 .689 .619 .783 .659 .718 .671
ANN (Reduced Feature) .867 .812 .674 .611 .752 .674 .699 .656
ANN (Reduced Feature) w/ disc. .861 .801 .678 .618 .776 .703 .718 .685
RF (Reduced Feature) .850 .771 .656 .596 .757 .526 .710 .643
RF (Reduced Feature) w/ disc. .860 .782 .667 .621 .738 .585 .718 .662
kNN (Reduced Feature) .846 .742 .649 .577 .711 .535 .696 .646
kNN (Reduced Feature) w/ disc. .845 .742 .660 .599 .726 .522 .693 .639

Table 26. Our methods vs. the rest: mean classifier AUC for ε = 0.3, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .855 .855 .648 .648 .639 .639 .641 .641
HC (LR) w/ disc. .849 .849 .655 .655 .653 .653 .668 .668
HC (ANN) .841 .841 .636 .636 .663 .663 .646 .646
HC (ANN) w/ disc. .831 .831 .623 .623 .670 .670 .668 .668
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .862 .824 .705 .637 .750 .687 .675 .565
LR (Imputation) w/ disc. .853 .764 .681 .607 .777 .643 .717 .665
ANN (Imputation) .862 .824 .706 .638 .781 .704 .695 .565
ANN (Imputation) w/ disc. .852 .764 .684 .608 .780 .642 .718 .664
RF (Imputation) .828 .757 .648 .594 .763 .635 .703 .651
RF (Imputation) w/ disc. .852 .761 .662 .594 .768 .628 .718 .659
kNN (Imputation) .848 .771 .659 .580 .716 .554 .688 .623
kNN (Imputation) w/ disc. .840 .735 .634 .561 .719 .540 .687 .596
LR (Reduced Feature) .854 .778 .659 .603 .721 .622 .682 .638
LR (Reduced Feature) w/ disc. .848 .753 .669 .617 .758 .640 .709 .673
ANN (Reduced Feature) .849 .796 .655 .605 .728 .667 .685 .650
ANN (Reduced Feature) w/ disc. .844 .792 .653 .607 .741 .666 .710 .676
RF (Reduced Feature) .831 .756 .636 .592 .732 .548 .700 .650
RF (Reduced Feature) w/ disc. .843 .778 .653 .617 .718 .564 .710 .671
kNN (Reduced Feature) .828 .735 .626 .573 .695 .556 .685 .638
kNN (Reduced Feature) w/ disc. .826 .735 .643 .592 .709 .561 .682 .635
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Table 27. Our methods vs. the rest: mean classifier AUC for ε = 0.4, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .827 .827 .627 .627 .646 .646 .634 .634
HC (LR) w/ disc. .820 .820 .637 .637 .661 .661 .660 .660
HC (ANN) .808 .808 .613 .613 .659 .659 .637 .637
HC (ANN) w/ disc. .796 .796 .607 .607 .642 .642 .659 .659
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .842 .794 .683 .620 .735 .674 .664 .560
LR (Imputation) w/ disc. .827 .727 .663 .592 .754 .618 .709 .652
ANN (Imputation) .842 .795 .685 .621 .763 .687 .678 .560
ANN (Imputation) w/ disc. .826 .727 .664 .592 .756 .617 .709 .652
RF (Imputation) .806 .736 .634 .584 .736 .628 .694 .649
RF (Imputation) w/ disc. .826 .725 .645 .582 .744 .608 .708 .648
kNN (Imputation) .823 .746 .638 .569 .701 .554 .677 .613
kNN (Imputation) w/ disc. .812 .704 .617 .552 .696 .527 .671 .582
LR (Reduced Feature) .830 .784 .633 .597 .704 .638 .669 .633
LR (Reduced Feature) w/ disc. .824 .766 .653 .615 .736 .669 .696 .663
ANN (Reduced Feature) .826 .786 .630 .596 .704 .659 .670 .641
ANN (Reduced Feature) w/ disc. .820 .779 .637 .598 .710 .646 .696 .664
RF (Reduced Feature) .807 .752 .618 .591 .701 .566 .686 .647
RF (Reduced Feature) w/ disc. .823 .780 .641 .614 .703 .611 .696 .662
kNN (Reduced Feature) .806 .747 .606 .574 .677 .577 .671 .629
kNN (Reduced Feature) w/ disc. .806 .748 .628 .592 .687 .590 .668 .625

Table 28. Our methods vs. the rest: mean classifier AUC for ε = 0.5, unbalanced datasets (”w/ disc.” stands for ”with discretization of
features”, ”Tru.” for ”truthful reporting”, and ”Str.” for ”strategic reporting”).

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC (LR) .789 .789 .611 .611 .646 .646 .623 .623
HC (LR) w/ disc. .779 .779 .616 .616 .655 .655 .646 .646
HC (ANN) .776 .776 .597 .597 .643 .643 .625 .625
HC (ANN) w/ disc. .767 .767 .584 .584 .624 .624 .645 .645
MINCUT - - - - - - - -
MINCUT w/ disc. - - - - - - - -
MAJ - - - - - - - -
MAJ w/ disc. - - - - - - - -
LR (Imputation) .815 .749 .662 .601 .727 .665 .652 .555
LR (Imputation) w/ disc. .791 .680 .640 .577 .727 .595 .695 .637
ANN (Imputation) .814 .750 .664 .602 .748 .676 .660 .554
ANN (Imputation) w/ disc. .790 .679 .640 .575 .728 .594 .696 .636
RF (Imputation) .778 .698 .618 .572 .709 .619 .686 .644
RF (Imputation) w/ disc. .791 .680 .627 .569 .719 .588 .693 .634
kNN (Imputation) .790 .702 .616 .558 .684 .550 .666 .605
kNN (Imputation) w/ disc. .774 .658 .595 .543 .672 .518 .658 .565
LR (Reduced Feature) .792 .768 .609 .589 .682 .643 .653 .624
LR (Reduced Feature) w/ disc. .785 .752 .633 .604 .706 .656 .673 .645
ANN (Reduced Feature) .786 .760 .604 .583 .679 .641 .653 .629
ANN (Reduced Feature) w/ disc. .782 .750 .611 .577 .672 .621 .673 .644
RF (Reduced Feature) .771 .732 .599 .583 .667 .576 .667 .638
RF (Reduced Feature) w/ disc. .788 .754 .624 .601 .682 .621 .673 .644
kNN (Reduced Feature) .769 .740 .583 .574 .656 .588 .651 .620
kNN (Reduced Feature) w/ disc. .770 .738 .608 .578 .658 .586 .648 .617
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