
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Incentivizing and Rewarding High-Quality Data via Influence Functions

Anonymous Authors1

Abstract
We consider a crowdsourcing data acquisition sce-
nario, such as federated learning, where a center
collects data points from a set of rational agents,
with the aim of training a model. We show how a
payment structure can be designed to incentivize
the agents to provide high-quality data, and to pro-
vide this data as early as possible, based on a char-
acterization of the influence that data points have
on the empirical risk of the model. Our contribu-
tions can be summarized as follows: (a) we prove
theoretically that this scheme ensures truthful data
reporting as a game-theoretic equilibrium and fur-
ther demonstrate its robustness against mixtures
of truthful and heuristic data reports, (b) we de-
sign a procedure for a subset of models according
to which the influence computation can be effi-
ciently approximated and processed sequentially
in batches over time, and (c) we develop a theory
for linear regression models that allows correct-
ing the difference between the influence and the
overall change in model risk.

1. Introduction
The success of machine learning depends to a large extent on
the availability of high quality data. For many applications,
data has to be elicited from independent and sometimes
self-interested data providers. A good example is federated
learning (Konečnỳ et al., 2016), where a single center (e.g.
a large company) collects data from a set of agents to jointly
learn a model. Other examples of such settings can be found
in crowdsourcing.

So far, research in federated learning has focused on pro-
tecting the privacy of contributed data, but has not consid-
ered how to reward the agents for the data they provided.
Given that gathering accurate data is often a costly task,
one should not expect the agents to exert the required effort
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unless they are properly compensated. This phenomenon
has been documented in practice (e.g., see (Vuurens, de
Vries, and Eickhoff, 2011; Shah, Zhou, and Peres, 2015)
and references therein) and is justified by the principles
of agent rationality, an integral part of the field of game
theory. Game theory tells us that we should be rewarding
agents monetarily, with their payments being dependent
on the quality of the data they provide. However, to do
this, we first need to answer the following question: ”What
constitutes high-quality data?”

Intuitively, a high-quality data point is one that improves
the accuracy of the model. We should be looking to give
higher rewards to the agents that provide useful data, com-
pared to those agents that do not contribute to improving
the estimation. Additionally, we would like to reward more
those agents that provide their data as early as possible.

1.1. Our Approach

We consider a crowdsourcing scenario like the one described
above, and we aim to design incentive schemes, i.e., mech-
anisms that reward the agents proportionally to the effect
that they have on the accuracy of the model. A clear way
of measuring the effect of individual points on the accuracy
of a model is via the classical notion of influence (Cook
and Weisberg, 1980). For a given data point, the influence
quantifies how much the model’s predictions would change
if that point were not used in the training process. This
allows us to quantify the effect that a single point has on the
final outcome; we can simply remove the point, retrain, and
compare the difference in the loss function. Based on the
influence, we design schemes that reward agents proportion-
ally to the decrease in the loss function due to their provided
data points. The center then will only have to pay for data
that improves the model’s predictive capabilities and has the
guarantee that the total cost of the data acquisition process
will be bounded. Fig. 1 shows how an influence-based
crowdsourcing elicitation framework might be structured.

We will show theoretically that the prescribed behavior, i.e.,
exerting the required effort to extract a sample from the
underlying distribution and reporting that sample, is the
best option for the agents under reasonable assumptions. In
game-theoretic terms, we prove that our incentive schemes
induce this type of behavior as an equilibrium of the corre-
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Figure 1: The setting in this paper: self-interested strategic agents observe a distribution and report to a center. The center
learns a model and rewards agents (here agent 3) according the their quality score, given the other reports that were received
earlier (here from agents 1 and 2).

sponding game. We strengthen our result by showing the ro-
bustness of the scheme against heuristic reports, i.e., agents
that do not exert the effort to obtain useful information, and
simply provide some untruthful report. Specifically, we
show that (a) if the Center has independent data for testing,
then the agents are always incentivized to provide truthful
reports and (b) the same holds even if the test set is assem-
bled by the reports of the agents, and a fraction of the agents
decide to use an uninformed strategy.

For many practical applications computing the exact influ-
ence is prohibitively inefficient. For this reason, following
Koh and Liang [2017], we compute an approximation of the
exact influence, based on up-weighing the training point by
a small quantity. Our proposed approximation extends the
idea in (Koh and Liang, 2017), which (without any modi-
fications) turns out to be insufficient for our purposes. We
show that the employed approximation is very close to the
value of the exact influence, while achieving a dramatic
improvement in speed for gradient descent-based learning
models such as logistic regression.

Then, we consider the case where the data points arrive se-
quentially; this captures most real-life scenarios of interest,
as the data acquisition process is usually sequential over
time. We employ our incentive scheme to reward the agents
in batches, with the fundamental property that agents that
provide their data earlier are rewarded more, a desirable
property as explained above. We consider two alternatives
when it comes to the influence of data points in the current
batch: Marginal-Loss (M-Loss), in which we include the
data points of the current batch in training and Marginal-
Gain (M-Gain), in which we do not. We propose an ana-
lytical method, which we demonstrate for linear regression,
that the Center can use to apply a correction factor to either

M-Loss or M-Gain which guarantees a bounded budget. We
run experiments on several different real datasets, as well
as generated data, and verify the efficacy of this correction
factor.

1.2. Related Work

The topic of learning a model when the input data points
are provided by strategic sources has been the focus of a
growing literature at the intersection of machine learning
and game theory. A significant amount of work has been
devoted to the setting in which agents are interested in the
outcome of the estimation process itself, e.g., when they are
trying to sway the learned model closer to their own data
points (Perote and Perote-Pena, 2004; Dekel, Fischer, and
Procaccia, 2010; Meir, Procaccia, and Rosenschein, 2012;
Caragiannis, Procaccia, and Shah, 2016; Chen et al., 2018b).
Our setting is concerned with the fundamental question of
eliciting accurate data when data acquisition is costly for
the agents, or when they are not willing to share their data
without some form of monetary compensation. Another line
of work considers settings in which the agents have to be
compensated for their loss of privacy (Cummings, Ioannidis,
and Ligett, 2015; Chen et al., 2018a).

A similar question to the one in our paper was considered
by Cai, Daskalakis, and Papadimitriou [2015], where the
authors design strategy-proof mechanisms for eliciting data
and achieving a desired trade-off between the accuracy of
the model and the payments issued. A similar model to
(Cai, Daskalakis, and Papadimitriou, 2015) was considered
in (Westenbroek et al., 2017; 2019), for the case of multiple
Centers eliciting data from the crowd. Because of the close
comparison, we will elaborate on this further in section 2.
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Our ideas are closely related to the literature of Peer Con-
sistency mechanisms (Faltings and Radanovic, 2017) and
Peer Prediction mechanisms for crowdsourcing (Radanovic,
Faltings, and Jurca, 2016). The idea behind this literature is
to extract high-quality information from individuals by com-
paring their reports against those of randomly chosen peers.
This approach has been largely successful in the theory of
eliciting truthful information. The same principle applies
to our case, where the payments are dependent on the im-
provement of the model and therefore agents are rewarded
for providing helpful information. Finally, Jia et al. [2019]
recently considered a setting in which the value of the pro-
vided data information is determined via the Shapley value.
Their approach is inherently different from ours, but it is
worth noting that they consider the influence approximation
of (Koh and Liang, 2017) for approximating the Shapley
value.

2. Setting
In our setting, there is a Center that wants to learn a model
parametrized by θ, with a non-negative loss function L(z, θ)
on a sample z = (x, y). The samples are supplied by a set
A of Agents, with agent i providing point zi = (xi, yi).
We will denote by A−i the set of agents excluding agent
i. Given a set of data Z = {zi}ni=1, the empirical risk
is R(Z, θ) = 1

n

∑
i L(zi, θ). The center uses a scoring

function s(z) to determine the reward it pays for the data z.

Our approach differs from other papers on this topic in that
we make relatively few assumptions about agent beliefs and
effort models. We consider the agent and center models as
follows:

Agent: It is assumed that each agent imust exert effort ei(o)
to observe data point o. We adopt a simple effort model, in
which the agent makes a binary choice either to exert effort
to make an observation, or exerts 0 effort and reports a data
point based on some heuristic. The observation oi and the
necessary effort expended are unknown a priori to the agent.
When the agent decides to make an observation, there is
some expected effort δi over the distribution of observable
data points, which is known to the agent a priori. This value
can vary amongst the agents. An observation oi = g(φi|ψi),
where φi is drawn from some shared underlying distribution
Φ, ψi is a hidden latent random variable drawn from a shared
distribution Ψ, and g is a function that applies noise to φi
given ψi. The agents have 2 beliefs regarding their noise,
which we formulate as follows:

- Unbiased: ∀φ ∈ Φ, ∀i, EΨ[g(φ|ψi)] = φ

- Non-Trivial: pΨ(g(φ|ψi) = φ) = 0

The Center will employ a scoring function s(·) to provide
payments to the Agents, dependent on their reports; we post-

pone any details about this scoring function until the next
section. We assume that agents possess no prior belief about
Φ or about the model used by the center, and therefore there
is no belief update process when making an observation oi.
This means that the strategy space of the agents is limited
to the following:

- Expend effort δi to make observation oi and make the
truthful report ri = oi, receiving expected utility s(oi)−
δi, where s is the scoring function used by the center. We
refer to this as the truthful strategy.

- Choose some arbitrary heuristic Hi and report ri = hi,
with hi ∈ Hi, expending 0 effort and receiving utility
s(hi).

- Opt-out and not observe or report anything.

Agents are rational, so they will choose the strategy that
maximizes their expected utility. We make one further as-
sumption about agent beliefs. For this we introduce the no-
tion of risk-monotonicity, which is the notion that a model
learner is monotonic in the true risk over the number of data
points in the training set. While (Loog, Viering, and Mey,
2019) show that not all empirical risk minimizers are risk-
monotonic in the number of training points, their counter-
examples are adversarially constructed. As Agents have
no prior information about the distributions, we consider it
reasonable to make the following formal assumption:

Agents believe the center’s model is risk-monotonic with
respect to the true distribution Φ, i.e. an agent expects that
a point drawn from Φ will not worsen the model’s expected
risk when evaluated on Φ.

Center: The center wishes to construct a model because
they believe they can extract some profit from this model.
We assume the profit is a function f(R) of the model risk.
The expected utility of the center is then the profit f(R)−
c(R), where c(R) is the expected cost of constructing a
model with riskR. We do not assume a priori that c is known
to the center, although it may be computable depending on
the choice of scoring function s. We assume that f(R) is
monotonically decreasing. In order to evaluate the model
risk R, we assume two cases: (a) the Center may possess an
independent test set, or (b) it may have to acquire a test set
by randomly selecting reports from the agents with some
probability p for each agent.

Implications: We contrast our setting with that considered
by Cai, Daskalakis, and Papadimitriou [2015]. In this paper
presents a mechanism which forms a Dominant Strategy
Equilibrium (DSE), but acquiring such a strong solution
concept requires the adoption of certain strong assumptions.
The authors assume that each agent chooses an effort level,
and the variance of the accuracy of their reports is a strictly



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Incentivizing and Rewarding High-Quality Data via Influence Functions

decreasing convex function of that effort. Furthermore,
these functions need to be exactly known to the Center.
Finally, the paper does not consider the strategy space of
non-truthful heuristic reporting. In this paper, we only re-
quire that the cost of effort is bounded. Furthermore, our
strategy space is more expressive in the sense that, as in
real-life scenarios, data providers can choose which data to
provide and not just which effort level to exert.

It is easily provable that the strong solution concept of a
truthful DSE is impossible to achieve in general with our
more flexible assumptions. Suppose there is a mechanism
that has a truthful DSE for some binary observation signal.
Then suppose for the same mechanism the observation sig-
nal is inverted, i.e. the agents observe 0s as 1s and vice versa.
From the perspective of any agent, if all other agents report
the inverse of the observation, i.e. the original un-inverted
signal, this agent is clearly incentivized to also report the
inverse of the observation by the assumption that truthful
report of the original signal is a DSE. Hence, there does not
exist a truthful DSE for this inverted signal.

3. Game-theoretic Incentives
An incentive scheme is a function that maps data points
zi to payments s(zi); intuitively, a good incentive scheme
should overcome the cost of effort (as otherwise agents
are not incentivized to submit any observations) but also,
crucially, to reward based on the effect that the data point
zi has on improving the accuracy of the trained model. For
this reason, we will design incentive schemes via the use of
influences. Let Z−j = {zi}i6=j and let

θ̂ = arg min
θ
R(Z, θ) and θ̂−j = arg min

θ
R(Z−j , θ).

We will assume that the Center is in possession of an test
set T = {zk}. Then the influence of zj on the test set is
defined as

infl(zj , T, θ) = R(T, θ̂−j)−R(T, θ̂).

We will simply write Infl(zj), when T and θ are clear from
the context. Then, we can design the following incentive
scheme:

- Case 1: The center possesses an independent test set:
s(ri) = αcInfl(ri)− ε, where ε > 0 is a very small value.

- Case 2: The center draws its test set from the reports,
with each report being added to the test set with some
probability p: s(ri) = αcInfl(ri)−ε

(1−p) or 0 if the report is
added to the test set.

We will discuss how the center can choose αc in detail.

Following standard game-theoretic terminology, we will say
that an agent supplying point rj is best responding to the set
of strategies r−j chosen by the other agents, if the strategy

that it has chosen maximizes the quantity E[s(rj |r−j) −
ei(rj)] over all possible alternative reports r′j , where the
expectation is over the distribution of reports of the other
agents. We will say that a vector of strategies (i.e., a strategy
profile) (r1, . . . , rn) is a Bayes-Nash equilibrium (BNE) if,
for each agent j, rj is a best response. If rj is a best response
to any set of strategies of the other players, we will say that
rj is a dominant strategy.

3.1. Incentives for Agents

For the lemmas in this section, we make the following as-
sumptions:

- Observation noise is unbiased and non-trivial, as stated
in the previous section.

- Agents have no prior knowledge of the true distribution
Φ or the model of the center.

The proofs of the following statements are omitted due to
lack of space, but are included in the supplement.

Lemma 1. An agent having made no observation believes
the expected influence of any particular report to be 0.

Lemma 2. An agent Ai believes that, almost
certainly, given a finite number of reports,
EΦ[EΨ[Infl(oi|{oj}j 6=i)]] > 0 when evaluated on
{ztest} with ztest in the distribution of observations.

The following theorem asserts that as long as the test set
consists of truthful information, the agents have a dominant
strategy of either being truthful of opting out. In the case
where the Center possesses an independent test set, this con-
dition is satisfied trivially. In addition, the theorem provides
a BNE guarantee: even if the test set is assembled by the
Agents themselves, they have incentives to be truthful (or
opt out) as long as the other Agents are truthful. However,
it might still be the case that certain Agents report heuris-
tically; we consider this case in Subsection 4.4 and show
robustness of our incentives schemes there.

Theorem 3. Suppose that (a) the noise is unbiased and
non-trivial, (b) the agents do not have knowledge of the
distribution or the model and (c) the test set consists of
truthful information. Then, there is a large enough αc such
that every agent, almost certainly, has a dominant strategy
of either being truthful or opting-out.

3.2. Incentives for the Center

We now consider how this incentive scheme relates to the
utility of the center. Given a center with profit function
f(R), under a truthful BNE, the utility of the center is at
least:

f(R)−
∑
i

αcInfl(oi)
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But we require that αc >
max(δi)

EΦ[EΨ[Infl(oi|{oj}j 6=i)]]
. Therefore,

we have that the utility of the center in expectation is f(R)−
n max(δi) − ε where n is the number of agents. In order
for the center to have positive utility, the following must
be satisfied: max(δi) <

f(R)
n . It is possible in a real-world

case that this inequality is not satisfied. This represents the
case when the labor of the agents is too expensive to scale
appropriately with the profit that the center would receive
from building the model. However, a center can manipulate
the value of αc in order to attain a positive utility as long as
not too many agents are forced to opt out.

4. Practical Setting
In this section, we present methods that allow this influence-
based incentive scheme to be used in a practical setting. We
consider in particular the following cases:

- Learning the distribution of a random variable with
k values: an Agent i reports its own instance of the
variable zi = xi, and the model θ̂ is an estimate of
a probability distribution θi = p(xi). Each model
parameter is the normalized frequency of reports of
value xi.

- Learning a linear regression model: an Agent i reports
a pair zi = (xi, yi), and the Center learns a regression
model ŷ = θ · x+ θ0 with a least squares loss function.

- Learning a logistic regression model: as above, but
with logistic loss function.

4.1. Learning Distributions

This setting describes the classical crowdsourcing setting for
the Peer Truth Serum (Faltings, Jurca, and Radanovic, 2017).
The Agents provide the Center with their observations of
different instantiations of a discrete random variable, and
the Center constructs a model of the variable’s distribution
as a histogram of the observations reported by the Agents.
Specifically, we assume that the Center elicits an unknown
distribution of m values p1, .., pm. Agents observe and
report samples taken from the distribution and the center
aggregates them in a histogram. We measure time by the
number n of values collected by the center.

Initially, each histogram cell hj , j ∈ [1, .., n] is set to 1,
corresponding to a uniform estimated probability θ̂j = 1/m.
Upon receiving a report of value xi, the Center updates the
model from θ̂−ito θ̂ using the following update rule:

θ̂(xi) = θ̂−i(xi) + (1− θ̂−i(xi)) · δ = δ + θ̂−i(xi) · (1− δ)

θ̂(xj) = θ̂−i(xj) · (1− δ) for xj 6= xi

The Center uses the logarithmic scoring rule (LSR) as a loss
function to measure the quality of the model for predicting

Figure 2: The exact influence is shown to become com-
putationally prohibitive for logistic regression with only a
moderate number of data points, while the computation time
for the approximate influence increases relatively slowly.

a test data point z:

LSR(θ̂, z) = ln θ̂(z)

We could compute the influence of a new data point on the
loss function directly. However, it is instructive to consider
an approximation using the Taylor expansion of the loss
function. Due to lack of space, me refer to the supplement
for the details.

From there, we can derive the following payment function:

infl(xi, z) = δ(n)

(
1

l

∑
z

1xi=z

θ̂(xi) −i
− 1

)
where l is the number of test data points, δ is a scaling factor,
for example δ(n) = 1/(n + 1). If the values don’t match,
the agent has to pay δ(n) (which could be a participation
fee charged up front). We note that when δ(n) is a constant,
for example δ(n) = 1, this scheme exactly matches the Peer
Truth Serum (Faltings, Jurca, and Radanovic, 2017) and has
been studied extensively in the literature.

4.2. Regression Learning

4.2.1. INFLUENCE APPROXIMATION

Trying to practically implement an incentive-based payment
mechanism for regression learners imposes a host of chal-
lenges. The first is the computational cost of computing
the influence for an agent. Specifically, we must compute
θ̂−i, which would involve entirely retraining the model. We
present an approximation method based on the method de-
scribed in (Koh and Liang, 2017), which uses the first term
of the Taylor expansion, like in Section 4.1 (see supple-
ment).

infl(ztest, zj) =
1

n
∇θL(ztest, θ̂)H

−1
θ ∇θL(zj , θ̂)

This approximation, however, has the undesirable property
that the mean influence of the training data is 0, as shown
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by the definition of θ̂ as the solution to
∑
∇θL(zj , θ̂) = 0.

As the sum of influences of the data points is in general
positive, this approximation is insufficiently precise. We
therefore include the 2nd order term in the Taylor expansion
of the empirical risk. Let ∂θj be the change in theta due to
up-weighting a training point zj , and let Hi be the Hessian
computed only on zi.

∂θj =
1

n
H−1
θ ∇θL(zj , θ̂) +

1

n2
H−1
θ HjH

−1
θ ∇θL(zj , θ̂)

Also taking into account the second order approximation
of the change in the loss on a test point when computing the
influence:

infl(ztest, zj) =

(
∇θL(ztest, θ̂) +

1

2
Hθ,ztest · ∂θj

)
· ∂θj

Experimental Results We ran simulations to confirm the
improved accuracy of the 2nd order approximation method
and to demonstrate its computational efficiency. For the
case of linear regression, computing the exact influence for
each data point can be computationally feasible, but with
a high enough input dimension the approximation will be
more computationally efficient. For a model that is learned
via an SGD method, such as a logistic regressor, it is clear
that the influence approximation will provide significant
improvements, as shown in Fig. 2. For all of our other
simulations, we used an artifically generated linear dataset
with noise, along with 4 datasets from the UCI database with
a linear regression model: ”Red and White Wine” (Cortez
et al., 2009), ”Air Quality” (De Vito et al., 2008), ”Crime”
(Redmond and Baveja, 2002), and ”Parkinsons” (Tsanas et
al., 2009). Non-predictive fields, redundant fields, and fields
with many missing values were removed.

Using 1000 points for training and 200 for testing, we eval-
uated the exact influence, 1st order approximation and 2nd
order approximation for each data point, recording the L1
and L2 norms between the approximations and the exact
influence. We then evaluated the worst case and average
improvement factors for the 2nd order approximation over
the 1st order approximation (2nd order error / 1st order
error). The worst case improvement for the L1 norm was
0.410, with the average being 0.0789 (lower is better). The
worst case improvement for the L2 norm was 0.482, with
the average being 0.0821. This means that for both the
L1 and the L2 norms, the 2nd order approximation was on
average about 12 times as accurate as the 1st order approxi-
mation. We also report the means of the L1 and L2 norms
between the 2nd order approximation and the exact influ-
ence to demonstrate that it is indeed accurate: 1.16 ∗ 10−3

for L1 and 2.45 ∗ 10−5 for L2.

4.2.2. BATCH PROCESSING

In a practical implementation, data arrives sequentially.
Prior, we assumed that the influences would be computed

over the entire dataset once all the data has been collected.
Ideally, the Center could compute the influence and provide
the payment immediately when a data point arrives. This
has the advantage of allowing the Center to perform a priori
budgeting. Suppose we have a dataset {zi} such that i indi-
cates the time of arrival of each datapoint. Then the sum of
influences is the overall change in risk on the test set T .

n∑
j=0

R(T, θ̂{zi}i<j
)−R(T, θ̂{zi}i≤j

) = R(T, θ̂∅)−R(T, θ̂{zi})

By assigning a utility to the overall change in risk, the
Center can budget the entire data collection period before
implementing the mechanism. However, computing the
influence for each data point as it arrives can be computa-
tionally prohibitive, even using the influence approximation.
The computation time of the approximation, in terms of
complexity, is dominated by computing H−1, which must
be computed every time the model is updated. The Center
can strike a balance between the two extremes by grouping
the data into batches, such that H−1 is only computed once
per batch.

With respect to a single batch, the game theory is the same
as the one-batch case, however, we must now consider how
batch processing affects incentives with respect to the time
of reporting. We observe the following: the 1st order influ-
ence approximation presented in (Koh and Liang, 2017) has
absolute error with respect to the exact influence of O( 1

n2 ),
and is 0 in expectation. Therefore, in expectation, the exact
influence is O( 1

n2 ). With this, it is clear that batch process-
ing incentivizes Agents to report as early as possible, which
is a desirable property for the Center.

4.2.3. INITIALIZING THE MODEL

One point we did not address was the meaning of θ̂∅ in
Section 4.2.2: the optimal parameters of the model given
no training dataset. In many cases, linear regression for
example, this is not properly defined. We term this the
initialization of the model. We interpret this initial model
as the aggregate knowledge of the Center prior to the data
collection period. If the Center already has some data it can
use for training, then it won’t need to collect as many data
points or spend as much money during the data collection
period. If the Center, rather than having a prior dataset,
has some knowledge about the distribution of the model
it wishes to learn, it can artificially generate a dataset by
sampling from this prior distribution, with the number of
samples corresponding to the confidence of the Center in
the prior model. In the case where the Center has no prior
knowledge, we consider this from an information theoretic
perspective to be a state of maximum entropy, and therefore
the initial model would be determined by sampling from the
uniform distribution within the appropriate bounds.
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Figure 3: M-Loss is trained on all points in current batch,
with influence computed by removing a point. M-Gain is
trained on all prior batches, with influence computed by
adding a point from current batch.

4.3. M-Loss and M-Gain

With batch processing, the Center has two choices in how
to implement the mechanism. The Center may include the
most current batch in updating the model and compute the
influence of each data point as though it were removed, or it
could exclude the current batch and compute the influence
of each data point as though it were added to the rest. We
call these two methods M-Loss and M-Gain respectively,
as shown in Fig. 3. It is clear by construction that for a
batch size of one, these two methods are equivalent, and
the sum of influences is equal to the overall change in risk.
For the sake of computational efficiency, the Center will
want to choose a batch size greater than 1. We note that
M-Loss will underestimate the expected influence in the
1-batch case because the influence of points that arrive early
in the batch won’t be computed until the later points arrive.
Similarly, we observe that M-Gain will overestimate. We
wish to characterize the extent to which M-Loss and M-Gain
underestimate and overestimate respectively, so the Center
can compensate. We restrict ourselves to the case of linear
regression, but the analysis can be extended to any model in
which the optimal parameters have a closed-form solution.

Let us consider two probability distributions Φ1 and Φ2,
and we assume they describe an input-output relationship
such that Φ(x, y) = q(x)p(y|x), and q1(x) = q2(x). This
assumption merely asserts that the data we are collecting is
drawn from the same domain regardless of the distribution
of the output. Distributions Φ1 and Φ2 determine, in expec-
tation, models M1 and M2 respectively. Let us now define
Ri,j as the expected risk of model Mi evaluated on distribu-
tion Φj . Using the standard mean-squared-error loss func-
tion, we have that Ri,j = Rj,j +E[(Mi−Mj)

2]. Now sup-
pose we sample N1 points from Φ1 and N2 points from Φ2
to form our training set {z}. Because the linear regression
solution is linear with respect to y, and q(x) is fixed, then
{z} determines in expectation a model Mc = N1M1+N2M2

N1+N2
.

With this, let us consider the practical application where Φ1
is the initialization distribution and Φ2 is the distribution of
reports from the Agents. Then when we evaluate the model,
we are only concerned with the error of the mixed model

Mc evaluated on Φ2:

Rc,2 = R2,2 +

(
N1

N1 +N2

)2

E
[
(M2 −M1)2

]
To simplify, we fix N1 = Q as the number of points used

for initialization, we define r = E[(M2−M1)2], and we let
N2 vary as x. Then we have our expected empirical risk in
terms of x:

R(x) =
Q2r

(Q+ x)2
+R2,2

We can approximate the influence of a data point arriving
after x data points as the negative of the derivative of the
risk:

−∂R
∂x

=
2Q2r

(Q+ x)3

Now we consider batch size b. We can compute the ex-
pected overall change in loss of some arbitrary batch k, with
k indexing starting at 1.

∆Rb(k) = R((k−1)b)−R(kb) =
bQ2r(2Q+ (k − 1)b)2

(Q+ (k − 1)b)2(Q+ kb)2

Now we consider the sum of influences of points in batch
k for M-Loss and M-Gain.

Smloss,b(k) = −b∂R
∂x

∣∣∣∣
kb

=
2bQ2r

(Q+ kb)3

Smgain,b(k) = −b∂R
∂x

∣∣∣∣
(k−1)b

=
2bQ2r

(Q+ (k − 1)b)3
,

Comparing these to the change in risk, we get the following
ratios:

Dmloss,b(k) =
Smloss,b(k)

∆Rb(k)
=

2(Q+ (k − 1)b)2

(Q+ kb)(2Q+ (2k − 1)b)

Dmgain,b(k) =
Smgain,b(k)

∆Rb(k)
=

2(Q+ kb)2

(Q+ (k − 1)b)(2Q+ (2k − 1)b)

By computing these values, the Center can pick an arbitrary
batch size and divide the influence scores by these formulas
such that the expected sum of influences is equal to the
overall change in risk, as in the case of batch size 1. We note
that these formula have constant growth rate with respect
to the number of points Q + kb and they asymptotically
approach the constant function Db(k) = 1. Therefore,
dividing the influence scores by these formulas will not
affect the incentive for early reporting.

We note that this analytic method only applies to linear
regression, and that it can only be reasonably extended to
learners with closed-form solutions for the optimal parame-
ters. However, the center can approximate this method by
using the observed influences and change in risk across a
batch and rescaling with the ratio of these two empirical
values, rather than the a-priori expected ratio.
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Figure 4: Ratio between Sum of Influences and Change in Loss with respect to batch size.

4.3.1. EXPERIMENTAL RESULTS

We present experimental results to demonstrate the validity
of the rescaling formula in real scenarios. We ran simula-
tions, using the same datasets as in Section 4.2.1, to estimate
the effect of the batch size on the ratios Dmloss and Dmgain.
We ran each simulation with 1500 total training points with
a varying batch size. Given a fixed batch size, we ran 10
trials for every dataset and aggregated them to form a more
general estimate of Smloss, Smgain, and ∆R. We then took
the ratios of these aggregates and compared against our the-
oretical results for Dmloss and Dmgain in Fig. 4. We ran this
same simulation with different numbers of initial points 20,
100, 200, and 500. We have chosen only to show the case
with 500 initial points, although the other simulations show
the same relationship. Each line represents a different batch
size. We have chosen to plot batch sizes 30, 100, and 300
for ease of visualization.

4.4. Using agent reports as test data

We have shown in Theorem 3 that under some reasonable
assumptions, truthful reporting forms a BNE for the agents.
However, this requires a truthful test set, which might not
always be at the disposal of the Center. We will show
that, even if we collect the reports as test data and a sub-
set of agents report using the same heuristic strategy (for
example, reporting according to some gaussian distribu-
tion), under certain conditions the heuristic reporters will
still be unprofitable. We can use the same analysis as in
Section 4.3. Once again we consider two distributions Φ1
and Φ2 with the same assumptions as before. Let Φ1 be the
distribution of heuristic reports and Φ2 by the distribution
of truthful reports. Suppose that we draw x1 points from
Φ1 and x2 points from Φ2, with n = x1 + x2. Then we
have our mixed model Mc = (x1M1 + x2M2)/n. The
mixed model will then be evaluated on the mixed distribu-
tion Φc = (x1Φ1 + x2Φ2)/n. Taking the empirical risk
Rc,c, we compute the influences:

− ∂Rc,c
∂x1

=
p

n
R1,1 −

p

n
R2,2 −

p(2p− 1)r

n

− ∂Rc,c
∂x2

= −1− p
n

R1,1 +
1− p
n

R2,2 +
(1− p)(2p− 1)r

n

We wish to know under what conditions the agents reporting
according to Φ2 will receive a higher reward than those
reporting according to Φ1:

0 < −∂Rc,c
∂x2

−−∂Rc,c
∂x1

This yields for the fraction p = x2/n of non-heuristic
reports:

p >
1

2
+
R2,2 −R1,1

2r

Because Ri,i represents the risk of model i evaluated on the
points used to compute model i, we will call it the residual
risk of the model. This bound shows that the problematic
case for the Center is when the residual risk is lower for the
heuristic model than the truthful model. In this case, the
Center will require more than a majority of truthful reporters
to maintain proper truthful incentives. If the heuristic re-
porters are uncoordinated or random, causing the residual
risk in the truthful model to be lower than that of the heuris-
tic model, then the Center does not even require a majority
of truthful reporters to make heuristic reporting unprofitable.
If the heuristic model is significantly different from the truth-
ful model, the the bound will tend towards 1

2 , so profitability
will be decided by the majority.

5. Conclusion
We have presented a novel incentive scheme for good quality
data acquisition based on influence functions. The influence
score has the clear advantage that the Center will only have
to pay for data that improves the performance of the model.
We have shown for regression models how influence can
be approximated and processed in batches for efficiency,
and developed a theory that allows correcting the difference
between the influence and the overall change in loss.We also
analyzed the influence of agents that report heuristically
without making the effort to collect actual data and showed
that the mechanism is robust to irrational reports.
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