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Abstract

Data quality is a key metric of data crowdsourcing,
which captures how accurate the data is compared
to the ground truth. In general, workers participat-
ing in a crowdsourcing task have diverse intrinsic
quality, depending on their characteristics (e.g., lo-
cation, expertise). To improve data quality, it is
important to incentivize workers to truthfully make
effort in the task and report their data. In this pa-
per, we study effort elicitation in data crowdsourc-
ing where workers have diverse quality and know
their quality, while it is unknown to the requester.
We show that for one-stage effort elicitation, a sym-
metric quality-based threshold strategy is an equi-
librium for the workers. Then we propose an online
quality learning mechanism with sequential effort
elicitation. We show that under this mechanism,
a symmetric quality-based threshold strategy is an
approximate equilibrium, where the approximate
error goes to 0 asymptotically. Based on the prelim-
inary results in this paper, several extensions and
generalizations of the problem here will be studied
in future work.

1 Introduction
Data crowdsourcing (referred to as “crowdsourcing” for
brevity) has found a wide range of applications. Typical
applications involves physical sensing tasks (also known as
“crowdsensing”) such as spectrum sensing, traffic monitor-
ing, and environmental monitoring. In principle, crowdsourc-
ing leverages the “wisdom” of a potentially large crowd of
workers (e.g., mobile users) for a crowdsourcing task. A key
advantage of crowdsourcing lies in that it can exploit the di-
versity of inherently inaccurate data from many workers by
aggregating the data obtained by the crowd, such that the data
accuracy (also referred to as “data quality”) after aggregation
can be substantially enhanced. With enormous opportunities
brought by big data, crowdsourcing serves as an important
first step for data mining tools to harness the power of big
data in many application domains.

To fully exploit the potential of crowdsourcing, it is im-
portant to assign tasks to workers based on their quality.

A worker’s quality1 captures the intrinsic accuracy of the
worker’s data relative to the ground truth of the interested
variable, and it generally varies for different workers depend-
ing on a worker’s characteristics (e.g., location, capabilities of
sensors, expertise in a domain). For example, if the task is to
detect whether a licensed frequency band is idle or occupied
by a licensed user (for opportunistic spectrum access by unli-
censed users), then the quality of a worker’s data is the prob-
ability of correct detection, which depends on the worker’s
location relative to the licensed user. Workers generally have
diverse quality. A worker can learn its quality based on the
knowledge of its characteristics, such as its location. How-
ever, the quality of a worker’s can be its private information,
which is unknown to and cannot be verified by the crowd-
sourcing requester. For example, a worker’s location is often
its private information that is unknown to the requester.

In addition to the worker’s intrinsic quality, the data qual-
ity is also affected by the worker’s effort exerted in the task.
The data quality when the worker makes effort is higher than
when it makes no effort. For example, to detect whether a
licensed frequency band is idle, a worker should measure the
signal in that band to make an estimate, rather than making
a guess without any measuring. However, a worker’s effort
can also be its hidden action that cannot be observed by the
requester. Due to the inaccurate nature of the data, a strategic
worker may report some arbitrary data to the requester with-
out making effort in the task, while the requester is not able
to verify whether effort was actually made. Furthermore, the
data itself obtained by a worker from the task could also be
its private information that it can manipulate in favor of itself.

In this paper, we study effort elicitation2 when they have di-
verse quality and know their quality, while the requester does
not know workers’ quality and cannot explicitly elicit this in-
formation from the workers (as done by the truthful quality
elicitation mechanisms proposed in [Gong and Shroff, 2017;
2018]). The goal of the requester is to incentivize workers
to truthfully make effort in the task and report their data. In
some situations, the requester performs task allocation and
data aggregation with effort elicitation while being oblivious

1We use “worker quality” and “quality” exchangeably in this pa-
per. “Worker quality” should be distinguished from “data quality”.

2In this paper, we use “effort elicitation” instead of “effort and
data elicitation” for brevity.



of workers’ quality. In other situations, the requester can
learn workers’ quality on the fly while performing task al-
location and data aggregation based on the learned quality,
which can improve system efficiency. In this setting, the re-
quester’s online quality learning and effort elicitation present
non-trivial coupling with each other: effort elicitation affects
workers’ quality and thus the quality that is learned, while on-
line quality learning affects task allocation and thus workers’
reward which incentivizes their effort. This coupling is fur-
ther complicated by the strategic interaction among workers.
The analysis of online quality learning with effort elicitation
draws on synergistic integration of models and methods from
reinforcement learning and mechanism design.

The main contributions of this paper is to take initial steps
towards the direction described above and present some pre-
liminary results. We show that for one-stage effort elicitation,
a symmetric quality-based threshold strategy is a Bayesian
Nash equilibrium (BNE) for the workers. Then we propose
an online quality learning mechanism with sequential effort
elicitation. We show that under this mechanism, a symmet-
ric quality-based threshold strategy is an approximate BNE,
where the approximate error is upper bounded by a con-
stant as the time horizon goes to infinity, and thus the time-
averaged approximate error goes to 0 asymptotically.

2 Related Work
Incentive mechanisms for data crowdsourcing. There have
been a lot of recent research on incentive mechanisms for
data crowdsourcing [Duan et al., 2012; Yang et al., 2012;
Koutsopoulos, 2013; Feng et al., 2014; Tarable et al., 2015;
Shah and Zhou, 2015; Luo et al., 2015; Wang et al., 2016; Pu
et al., 2016; Zhang et al., 2016]. Many of these mechanisms
incentivize workers to truthfully reveal their participating cost
of crowdsourcing, which is a strategic worker’s private infor-
mation. Some recent works have studied effort and/or data
elicitation in crowdsourcing [Dasgupta and Ghosh, 2013;
Luo et al., 2015; Jin et al., 2017b; Liu and Chen, 2016b;
2016a; 2017], where a strategic worker may have incentive
to manipulate to its own advantage. [Liu and Chen, 2016b;
2017] have designed effort elicitation mechanisms for work-
ers with diverse cost, and studied the optimal reward for max-
imizing the requester’s payoff. Different from these works,
we study effort elicitation for workers with diverse quality.
This adds a new dimension to effort elicitation which lead
to different results. [Liu and Chen, 2016a] has designed a
bandit-based mechanism for sequential effort elicitation. This
paper is different from [Liu and Chen, 2016a] in that work-
ers’ quality is unknown to the requester, while it is assumed
to be known in [Liu and Chen, 2016a].

Two recent studies [Gong and Shroff, 2017; 2018] have
proposed a quality-aware crowdsourcing framework and de-
vised truthful mechanisms for quality and effort elicitation.
This paper is different from [Gong and Shroff, 2017; 2018],
since the requester cannot explicitly elicit workers’ quality
from them (e.g., so as to protect workers’ privacy). Although
this paper uses online quality learning, it only provides es-
timates of workers’ quality, which is different from accurate
quality elicited from workers as in [Gong and Shroff, 2017;

2018].
Quality-based data crowdsourcing. The quality of data

is important for allocating crowdsourcing tasks to workers,
and has been studied in a few works [Karger et al., 2011;
Koutsopoulos, 2013; Lee et al., 2015; Shah and Zhou, 2015;
Liu and Liu, 2015; Jin et al., 2015; 2016; 2017a]. One inter-
esting line of work [Jin et al., 2015; 2016; 2017a] in this di-
rection has studied truthful mechanisms for information qual-
ity based task allocation where workers have private partici-
pating cost. Some other works [Karger et al., 2011; Lee et
al., 2015; Liu and Liu, 2015] have focused on learning the
data quality of workers from their data. [Karger et al., 2011;
Lee et al., 2015] have studied exploiting the correlation of
workers’ data for different tasks. [Liu and Liu, 2015] has de-
veloped an online quality learning algorithm that asymptot-
ically finds the workers with highest quality without know-
ing the ground truth of tasks. Different from [Liu and Liu,
2015], we study online quality learning with sequential effort
elicitation, which presents intricate coupling between the two
components.

3 Problem Formulation
We consider a crowdsourcing requester (also referred to as
worker 0) recruiting a set of workers N , {1, · · · , N} to
work on a task. For convenience, let N+ , N ∪ {0}. The
structure and procedure of the crowdsourcing system is de-
scribed in detail as follows.

Data observation. The crowdsourcing task is to observe
and estimate an unknown and random variable of interest X .
The interested variable X takes discrete values (e.g., the an-
swer of a multi-choice question). For ease of exposition, we
assume that X takes one of two possible values3 0 and 1. Af-
ter working on the task, each worker i ∈ N+ (i.e., including
the requester) obtains random data Di. The accuracy of the
data Di is quantified by the correct probability qi, which is
the probability that Di is equal to the interested variable X ,
given by

qi , Pr(Di = X) = piei + p(1− ei).
Here the correct probability pi depends on the worker quality
pi of worker i and the effort ei exerted by worker i in the task,
which is explained as follows.

Worker quality. Given that worker i makes effort in the
task, the quality pi ∈ [0, 1] determines the correct probabil-
ity qi which quantifies how accurate Di is. The quality pi
is an intrinsic coefficient that captures worker i’s capabil-
ity for the task. Note that a larger pi means higher quality.
The quality generally varies for different workers. We as-
sume that each worker i ∈ N knows its own quality pi (e.g.,
by learning the correct probability based on its location), but
it is unknown to the requester. For ease of exposition, we
assume that each worker’s quality pi is within the range of
[p, p̄] which is known to the requester. We assume that each
worker’s quality (including the requester’s) follows a distribu-
tion with CDF F (p) and PDF f(p) with mean p0, and these
information is known to all the workers and the requester.

3The results of this paper can be fairly easily extended to the case
of multiple possible values of the interested variable X .



Worker effort. The effort ei ∈ {0, 1} represents whether
worker imakes effort in the task, where ei = 1 and ei = 0 in-
dicate making and not making effort, respectively. If worker
i makes effort, then the correct probability qi of worker i
is equal to the worker quality pi; otherwise, qi is equal to
p, e.g., which means that worker i simply makes a guess
of X randomly according to the prior distribution. To en-
sure that making effort is meaningful, we assume that pi >
p. Therefore, given the quality pi, making effort ei = 1
means a larger correct probability qi and thus higher accu-
racy of Di than not making effort. The binary effort model
(i.e., either making effort or not) is reasonable (also used
in, e.g., [Dasgupta and Ghosh, 2013; Liu and Chen, 2016b;
2017]), as workers’ behavior tend to be simple in practice.
We assume that each worker i can control its effort ei, but
it cannot be observed by the requester. We assume that the
requester itself always makes effort in the task (i.e., e0 = 1).

Reward payment. The requester pays a reward ri to each
worker i for its contributed data. Given the lack of the ground
truth x, this is achieved by the peer prediction mechanism
(see, e.g., [Dasgupta and Ghosh, 2013; Liu and Chen, 2016b;
2017; Jin et al., 2017b]) which compares the reported data di
with the data dj from a reference worker: a reward b is paid
to worker i if and only if di = dj :

ri , b1di=dj .

Then the probability that worker i is rewarded is given by

pipj + (1− pi)(1− pj).
Workers’ payoff. Based on the crowdsourcing system de-

scribed above, each worker i’s payoff ui is the reward ri paid
by the requester minus its cost in the task, given by,

ui , ri − eic.
Here the cost c represents how much resource is consumed
by worker i (e.g., how much time is spent by worker i) if it
makes effort ei = 1 in the task. If worker i make no effort
ei = 0, it incurs no cost. Note that the relative weight of the
cost c with respect to the reward ri can be captured by c. We
assume that workers have the same cost c which is known to
the requester. This assumption is reasonable when the cost
c is determined by a uniform market price for working on a
task.

Requester’s payoff. After collecting all the data d re-
ported by the workers, the requester aggregates the data d
by making an estimate x0 of the interested variable X based
on d. Then the utility of crowdsourcing is represented by the
correct probability pc of the estimate x0. The requester’s pay-
off u0 is the crowdsourcing utility (i.e., the correct probability
pc) minus the total reward paid to the workers, i.e.,

u0 , pc −
∑
i∈N

ri.

4 One-Stage Effort Elicitation
In this section, we study one-stage effort elicitation where the
requester collects data once from workers for a task. This
serves as basis for sequential multi-stage effort elicitation in
the next section.

In this paper, we focus on threshold strategies represented
by the threshold p∗: worker i makes effort if and only if its
quality pi is greater than the threshold. Intuitively, it suffices
to consider threshold strategies only, since given any other
workers’ strategies, a worker’s payoff is non-decreasing with
its quality. To capture the strategic interactions among work-
ers, we consider a Bayesian game where each worker i de-
cides whether to make effort depending on its own quality pi.
We are interested in a Bayesian Nash equilibrium defined as
below.

Definition 1 A threshold strategy profile {e∗i (pi)} is a BNE
if

E[ui(e
∗
i (pi)), e

∗
−i(pi)] ≥ E[ui(ei(pi)), e

∗
−i(pi)],∀ei(pi).

We first consider using a “non-strategic” reference worker
in peer prediction. A non-strategic worker is one who always
makes effort regardless of other workers’ behavior. In this
paper, for ease of analysis, we assume that the requester is
used as a non-strategic reference worker in peer prediction
(except for Proposition 2). The case of using strategic refer-
ence workers turns out to be much more complex to analyze
than using non-strategic reference workers. This is because
the data quality of a reference worker depends on its strate-
gic behavior, which further depends on the behavior of other
workers based on their quality.

Proposition 1 The threshold strategy with p∗ = c
b(2p0−1) +p

is optimal for all workers.

Proof. The reward of worker i when making effort is given
by

ri(ei = 1) = [pip0 + (1− pi)(1− p0)]b.

Thus, the optimal action is to make effort if and only if

ui(ei = 1)− ui(ei = 0) = (pi − p)(2p0 − 1)b− c ≥ 0.

�
Next we consider using strategic reference workers in peer

prediction.

Proposition 2 When the reference workers are strategic, if
F (p) is convex, there exist at most two threshold strategies p∗
that is a symmetric BNE for all workers.

Proof. The payoff gain of worker i by making effort is given
by

ui(ei = 1)− ui(ei = 0) = (pi − p)[2E[pj ]− 1]− c.

Thus, the threshold p∗ is the solution to the equation below:

∆ , (p∗ − p)[2
∫ p̄

p∗
f(p)pdp+ 2F (p∗)p− 1]− c = 0.

We observe that

∂∆2

∂2p∗
= 4f(p∗)(p0 − p∗) + 2(p∗ − p)[f ′(p∗)(p0 − p∗)− f(p∗)]

< 0

when f ′(p∗) > 0. Since ∆ is convex, there are at most two
solutions to the equation above. �



5 Sequential Effort Elicitation for Online
Quality Learning

In this section, we consider the situation where there are dif-
ferent tasks for which each worker has the same quality. This
can capture applications where the tasks are similar in na-
ture (e.g., tagging the same object in different photos). In
this situation, it is beneficial for the requester to learn work-
ers’ quality from their data, so that it can utilize the learned
quality to better perform task allocation and data aggrega-
tion. Moreover, the requester can estimate the accuracy of
the aggregated data based on the learned quality of work-
ers, which can be useful information. Note that this setting
is in contrast to the one-stage setting in the previous section
where the requester is oblivious to workers’ quality. It is also
different from the situations where the requester can elicit
workers’ quality [Jin et al., 2015; Gong and Shroff, 2017;
2018], since the learned quality is not accurate due to the lim-
ited number of data from the workers that can be observed by
the requester.

5.1 Online quality learning with sequential peer
prediction

We consider a sequential multi-task setting where a new task
arrives at each time step. We propose an online quality learn-
ing algorithm with sequential peer prediction (as described in
Algorithm 1), based on that proposed in [Liu and Liu, 2015].
Specifically, in each time step, it performs one of two func-
tions: exploration or exploitation. In each exploration step,
we first estimate the ground truth as X ′(t), and then estimate
workers’ quality p′i(t) based on the estimated ground truth
X ′(t), while we reward each worker by b1 via peer predic-
tion. In each exploitation step, we allocate the task to the
optimal worker i∗ that has the highest quality4, based on the
estimated user quality in the past exploration steps, and we
reward only the optimal worker by b2 via peer prediction.
Note that compared to most existing online learning problems
(such as MAB problems), a major difference of the problem
here is that the ground truth is unknown. This challenge is ad-
dressed by estimating the ground truth before estimating the
workers’ quality [Liu and Liu, 2015].

A central design issue for online learning algorithms is to
determine when to perform exploration or exploitation, in or-
der to achieve a desired balance between the longterm payoff
from exploration and the short-term payoff from exploitation.
This tradeoff is quantified in the algorithm by a threshold h(t)
given by

h(t) = β log t,

where
β = max{ 1

ε− α
,

1

p− α
}

and

ε ,
mini 6=j |pi − pj |

2
and α is any number with α < min{ε, p}.

4In future work, we will generalize the result to allocating the
task to the optimal set of workers for minimizing the correct proba-
bility pc of the estimate x0.

Algorithm 1: Online quality learning with sequential
peer prediction

1 Initialize t = 0; ε(t) is the set of exploration time steps
up to time t;

2 foreach t > 0 do
3 if ε(t) > h(t) then
4 exploration: allocate task 1 (the task that arrives

at t = 1) to all workers, and collect data Di(1)
from the workers;

5 reward each worker i by peer prediction
ri = b11Di(1)=D0(1);

6 estimate the ground truth X ′(t) =
∑N
i=1Di(t)

N ;
7 estimate each worker’ quality

p′i(t) =
∑
i∈ε(t) 1Di(t)=X′(t)

|ε(t)| ;
8 else if ε(t) ≤ h(t) then
9 exploitation: allocate task t to the worker k

with the highest quality based on the
estimated quality p′k(t) = maxi p

′
i(t);

10 reward the worker k by peer prediction
rk = b21Dk(t)=D0(t);

11 end
12 end
13 end

5.2 Analysis of offline optimal allocation
To provide useful insights, we first study the offline optimal
allocation, where the requester knows workers’ quality and
thus can find the optimal worker. To facilitate further anal-
ysis, we first focus on a single exploitation step. As prelim-
inary results, in this paper we assume that workers’ actions
are static over time (i.e., ei(t1) = ei(t2),∀t1 6= t2), and we
will study dynamic actions of workers in future work.

Proposition 3 For the offline optimal allocation in an ex-
ploitation step, there exists a unique threshold strategy p∗ that
is a symmetric BNE.

Proof. When worker i makes effort, its payoff is given by

ûi(ei = 1) = FN−1(pi)(2pip0 − pi − p0 + 1)b2 − c.

Otherwise, when worker i makes no effort, its payoff is
ûi(ei = 0) = 0, since its quality is pi(ei = 0) = p and thus
will not be selected in exploitation steps. Thus the unique
threshold p∗ is the solution to the equation below:

FN−1(p∗)(2p∗p0 − p∗ − p0 + 1)b2 − c = 0.

We can see that the left-hand side (LHS) above is an increas-
ing function of p∗. Thus there is a unique solution to the
equation. �

We can see that the threshold p∗ decreases when the distri-
bution F (p) improves. This is because when other workers
are more likely to have high quality, worker i is less likely
to be selected as the optimal worker to receive reward in the
exploitation step, and thus is less likely to make effort.

Next we turn to offline optimal allocation including both
exploration and exploitation steps.



Proposition 4 For the offline optimal allocation, there exists
a unique threshold strategy p∗ that is a symmetric BNE.

Proof. When worker i changes its action from not making
effort to making effort, the change of its payoff ūi(ei = 1)−
ūi(ei = 0) is given by:

h(t)

t
(pi − p)(2p0 − 1)b1

+ (1− h(t)

t
)FN−1(pi)(2pip0 − pi − p0 + 1)b2 − c.

Thus the unique threshold p∗ is the solution to the equation
below:

h(t)

t
(p∗ − p)(2p0 − 1)b1

+ (1− h(t)

t
)FN−1(p∗)(2p∗p0 − p∗ − p0 + 1)b2 − c = 0.

We can see that the LHS above is an increasing function of
p∗. Thus there is a unique solution to the equation. �

We can see that the threshold for both exploration and ex-
ploitation steps is less than that for exploration steps only or
for exploitations steps only. This is because worker i is likely
to receive more reward in both exploration and exploitation
steps by making effort.

5.3 Analysis of online learning based allocation
Based on the analysis for the offline optimal allocation, we
now study the online learning based allocation.

Proposition 5 The unique threshold strategy that is a sym-
metric BNE for the offline optimal allocation is a symmetric
2∆-approximate BNE for the online learning based alloca-
tion, where

∆ ,
T∑
t=1

Np0(
1

t2
+

1

αt2
).

Proof. We sketch the proof here and provide the detailed
proof in [Gong, 2018]. At each exploration step, each
worker’s payoff is the same as that in the offline optimal al-
location. However, at each exploitation step, each worker’s
payoff is different from the offline setting, as the optimal
worker may not be selected while some non-optimal worker
is selected instead. This error in selecting the optimal worker
is due to the error in the requester’s estimated quality of work-
ers compared to their actual quality. To characterize the gap
of a worker’s payoff from the offline setting, we first quan-
tify the probability of not selecting the optimal worker, or
selecting a particular non-optimal worker. This probability
is bounded by the probability that the ordering of workers’
estimated quality is wrong, which is bounded as below:

Lemma 1 The probability Pr(i∗ 6= k) that the ordering of
workers’ estimated quality is different from that of the actual
quality in the exploitation step at time t is bounded by

Pr(i∗ 6= k) ≤ N(
2

t2
+

1

αt2
).

Based on Lemma 1, the worker’s payoff in the online set-
ting is different from that in the offline setting by at most ∆.
In particular, we have

ūi(e
∗
i (pi) = 1)−∆ ≤ ui(e∗i (pi) = 1) ≤ ūi(e∗i (pi) = 1)

and

ūi(e
∗
i (pi) = 0) ≤ ui(e∗i (pi) = 0) ≤ ūi(e∗i (pi) = 0) + ∆.

Therefore, if worker i chooses action e∗i = 0 based on the
fact ūi(e∗i (pi) = 0) > ūi(e

∗
i (pi) = 1), then we have

ui(e
∗
i (pi) = 0)− ui(e∗i (pi) = 1)

≤ ūi(e∗i (pi) = 0) + ∆− (ūi(e
∗
i (pi) = 1)−∆) < 2∆.

If worker i chooses action e∗i = 1 based on the fact
ūi(e

∗
i (pi) = 1) > ūi(e

∗
i (pi) = 0), then we have

ui(e
∗
i (pi) = 1)− ui(e∗i (pi) = 0)

≤ ūi(e∗i (pi) = 1)− ūi(e∗i (pi) = 0) > 0.

�
The gap ∆ of a worker’s payoff between the online setting

and offline setting can be viewed as the worker’s “regret” of
the requester not using the offline optimal allocation but using
the online learning based allocation.

It can be easily seen that ∆ =
∑T
t=1( 1

t2 + 1
αt2 ) < ∞.

Therefore, the worker’s “regret” is finite, so that the average
regret goes to 0 as T →∞. This is because the online quality
learning is asymptotically optimal, so that the probability of
not selecting the optimal worker goes to 0 asymptotically as
T →∞.

6 Conclusion and Future Work
As data quality is a key metric of data crowdsourcing, it is
important to take into account the fact that workers partic-
ipating in crowdsourcing typically have diverse quality. In
this paper, we have studied effort elicitation in data crowd-
sourcing where workers have diverse quality and know their
quality, while it is unknown to the requester. We have shown
that for one-stage effort elicitation, a symmetric quality-based
threshold strategy is an equilibrium for the workers. We then
have proposed an online quality learning mechanism with se-
quential effort elicitation, for which we show that a symmet-
ric quality-based threshold strategy is an approximate equi-
librium.

Based on the preliminary results in this paper, several ex-
tensions and generalizations of the problem here will be stud-
ied in future work. First, we will study the optimal reward for
maximizing the requester’s payoff, including that in both ex-
ploration and exploitation steps for the online quality learn-
ing. Second, we will analyze the equilibrium in the online
quality learning when a worker can make different effort over
time. Third, we will consider the setting where workers do
not know their own quality.
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