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Abstract

Recently, peer consistency based schemes have
been proposed that incentivize crowdworkers for
investing effort and answering honestly. Such game
theoretic schemes evaluate the information pro-
vided by an agent based on consistency with in-
formation provided by peer agents about the same
data, and thus only apply to information that is ob-
servable by multiple agents. In this paper, we con-
sider eliciting personal data that is known only to
an agent herself. With attributes being personal in
nature, there are no peers that observe the same
information. However, when agents report com-
binations of multiple personal data, the correla-
tion between them can be exploited to find likely
peers. We show for the first time how to extend
a peer incentive scheme, the Peer Truth Serum,
to this setting for collecting personal data. This
new scheme applies, for example, to collecting per-
sonal health records or other multi-attribute mea-
surements about personal properties such as smart
homes. We provide a theoretical analysis of the
incentive properties of the new scheme and show
the performance of the scheme on several public
datasets, which confirm the theoretical analysis.

1 Introduction
Crowdsourcing is a promising method to collect data in an in-
expensive and convenient way. This data can be, for example,
subjective opinions or objective evaluations such as image la-
bels and pollution levels in a city. Measurements tasks are
particularly important in collecting features which are useful
in both supervised and unsupervised machine learning. How-
ever, there is always a concern about the reliability of the
data thus obtained. While some agents will do their best to
provide accurate data, many are not motivated to make the
effort to obtain and report the data properly. This signifi-
cantly degrades the quality of the data. For e.g., if the data
is to be observed with a sensor device, many may not be will-
ing to invest in the device to obtain a correct measurement.
One particular approach to address this problem is providing
the agents with incentives that cover the cost of their effort

and encourage them to provide high quality data. The in-
centives have to be contingent on the quality of the data, for
example, based on spot-checking the data for agreement with
a trusted ground truth. In many of the most interesting ap-
plications, however, the ground truth is not accessible. This
problem has been addressed by recent work on peer consis-
tency, which include game-theoretic mechanisms such as out-
put agreement [Waggoner and Chen, 2014], Bayesian truth
serum [Prelec, 2004],[Witkowski and Parkes, 2012], peer pre-
diction [Miller et al., 2005], peer truth serum [Radanovic et
al., 2016], [Dasgupta and Ghosh, 2013] and correlated agree-
ment [Shnayder et al., 2016],[Agarwal et al., 2017].

There is a lot of interest in extending this approach to col-
lecting information such as records of personal sports activ-
ity, physiological measurements or diet. Other examples of
personal information include different sensor measurements
observed at personal possessions such as smart homes or ho-
tels. Such data is very important for many next generation
machine learning applications. However, a fundamental lim-
itation of the existing incentive schemes is that they require
that a group of agents, called peers, observes the same data
or a noisy version of it. For example, agents should label
the same image, measure pollution at same location or give
opinion about same service. This does not work with per-
sonal data, since everyone is reporting about a different ob-
ject. However, we can extend the idea of peer consistency to
a setting where agents report a combination of attributes that
are known to be correlated with one another, even if the cor-
relation structure is not known. When rewarding the report
about one of the attributes, we can identify peers based on
similarity in the other attributes that are reported at the same
time and judge consistency in reports.

In this paper, we show how one such scheme, the Peer
Truth Serum (PTS) [Radanovic et al., 2016], [Radanovic and
Faltings, 2015], can be extended to the settings of eliciting
multi-attribute personal data from a crowd. We call this novel
scheme the Personalized Peer Truth Serum (PPTS). We in-
troduce task settings for eliciting continuous valued personal
features from agents, exploit them to develop PPTS and dis-
cuss theoretical properties and practical applicability of the
new scheme. Our scheme works in large scale settings when
there are multiple agents reporting data and there exist (un-
known) groups of agents sharing some personal characteris-
tics. We show the validity of our assumptions on real datasets.



We also show that even when these groups are estimated from
the reports given by agents, the incentive compatibility of the
scheme is not affected. The summary of our contributions in
the paper is as follows :
• We propose an incentive scheme to elicit continuous

valued multi-attribute personal data from crowd.
• We analyze and present several interesting theoretical

properties of the scheme. Our scheme ensures that truth-
ful reporting is an equilibrium and other undesired equi-
libria are less attractive. We also provide a practically
useful and theoretically sound test to judge the applica-
bility of our scheme on a new type of data to be elicited.
• We show the performance of the scheme on three real

datasets, which are publicly available and are relevant to
the settings of the paper.

2 Related Work
Several detail-free game theoretic incentive schemes, devel-
oped recently for crowdsourcing and assuming no ground
truth to be available for verification, fit the peer consistency
framework. These include [Dasgupta and Ghosh, 2013], the
Peer Truth Serum [Radanovic et al., 2016], the Logarithmic
Peer Truth Serum [Radanovic and Faltings, 2015] and the cor-
related agreement (CA) mechanism [Shnayder et al., 2016].
[Mandal et al., 2016] extend the CA mechanism to the case
where depending on the nature of the task, all agents may
have a different rating behavior. [Agarwal et al., 2017] ex-
tend the CA mechanism to the settings where any agent may
exhibit one of a few possible rating behaviors.

In all these mechanisms (which work only for discrete an-
swer spaces), peers are distinguished from rest of the worker
population by common task definition. The definition re-
quires peers to solve some common task independently for
e.g. rate the same website for adult content. Mechanisms
derived from the CA mechanism further require the peers to
solve multiple tasks (some non-common task in addition to
the common task). These mechanisms are inherently inappli-
cable to elicit continuous valued multi-attribute personal data
since every worker solves exactly one unique task, which is to
obtain various measurements about the object she owns (for
e,g. her body or house) and can’t solve any other task (i.e.
can’t access object owned by any another worker). We extend
the logarithmic peer truth serum to this setting while using a
concept similar to that of “peers”. In this setting, these peers
can not be distinguished using the common task definition.
Our mechanism approximates them from the data reported
by the workers while guaranteeing truthful equilibrium.

3 Settings
We consider the settings in which one is interested in collect-
ing data from a large number of agents W (|W | = n → ∞)
with some personal characteristics. The data being elicited
consists of a set of attributes A (|A| = d ≥ 2). The attributes
A are personal characteristics such as body measurements of
the agents. Agents independently take measurements for their
attributes and report them to a requester (center). The center
in turn rewards them based on the quality of their reports. We

assume the agents to be rational, seeking to maximize their
expected rewards. The agents choose a reporting strategy to
achieve this. In a heuristic reporting strategy, they save the
effort of even measuring the attribute and just report accord-
ing to some probability distribution. In an informed strategy,
they obtain the measurement and use a mapping to get the fi-
nal report. The aim is to formulate our incentive scheme as a
Bayesian game between the agents, where agents have prob-
abilistic beliefs about the measurements of one another, and
make truthful reporting (i.e. informed reporting with identity
mapping) a profitable equilibrium strategy of the game for all
agents.

3.1 Belief Model
We model the beliefs of agent i using three continuous ran-
dom variables for each attribute j. The first random variable
Xij is the attribute measurement itself. P (Xij)

1 is agent i’s
prior belief about measurements for the attribute j. The sec-
ond random variable Gj models the global factors that affect
the attribute value of any random agent. P (Gj) is the agent’s
prior belief about the global factors before taking measure-
ment for attribute j and P (Gj |Xij) is her posterior belief af-
ter taking measurement. The third random variable models
the local factors that are personal to the agent and affect its
attribute value. For every agent i, we model a set of other
agents Ni ⊂W (1 << |Ni| << |W |), called cluster of agent
i which share only these personal factors. Note that this is a
much weaker modeling condition as compared to that of shar-
ing personal measurements. The clusters, however, are un-
known to the mechanism. The random variable for personal
factors is denoted by Lkj , k being cluster to which agent i
belongs. In the rest of the paper, we will simply use notation
Lij for Lkj such that Lij are equal for all i in the same clus-
ter k. The P (Lij) is the agent’s prior belief about the per-
sonal factors before taking measurement for attribute j and
P (Lij |Xij) is the posterior belief after taking measurement.
Lij and Gj are related through P (Lij |Gj).

We use [Lyon, 2014] normal distribution to model Xij’s
dependence on Lij , i.e.,

P (Xij |Lij) = N (µLij , σ
2
Lij )

This naturally implies that the global distribution
P (Xij |Gj) is then modeled by a mixture distribution.

P (Xij |Gj) =

K∑
k=1

αk · P (Xij |Lkj)

.
Here, K (<< N) is the number of distinct clusters in the

population and αk is the mixing probability of kth cluster.

4 Mechanism (PPTS)
The center collects reports from all agents for all their at-
tributes. It then assigns each agent to its corresponding cluster
described in agent i’s belief. The cluster assignment step in
discussed in Section 6. For now, let’s assume this as an oracle

1In the paper, we use P (·) for density functions to keep notations
simple.



that gives every agent’s true cluster label. We define the jth
attribute score of agent i for reporting Xij = y as :

rij = log
f(y|µ̂Lij , σ̂

2
Lij

)∑K
k=1 α̂k · f(y|µ̂Lkj , σ̂

2
Lkj

)
(1)

where f is the Gaussian function given by

f(x|µ, σ2) =
1

σ
√
2π
e−

(x−µ)2

2σ2

µ̂lij and σ̂2
lij

are the mean and variance of values reported for
attribute j by agents in the cluster Ni. α̂k is the empirical
relative mixing frequency of cluster k.

Agent i finally gets a cumulative reward (CR) equal to the
average of attribute scores rij for all attributes j ∈ {1, 2...d}.
More formally,

CR(i) =

∑d
j=1 rij

d
Example: As an example for calculation of attribute scores,

consider agent i who reports its wrist measurement as 4.5
units. The reported wrist measurements of agents in the clus-
ter of agent i have mean 4 and s.d. 3. If there are 2 distinct
clusters in the population, another with mean 5 and s.d. 5
(with equal mixing frequencies), then the wrist attribute score
of agent i is given by:

rij = log
f(4.5|4, 32)

0.5 · (f(4.5|4, 32) + f(4.5|5, 52))

≈ log
0.1311

0.5 · (0.1311 + 0.0793)
≈ 0.22

On the other hand, if the means and s.d. of reports in the
cluster of i are 0 and 1 respectively, then wrist attribute score
of i is

rij = log
f(4.5|0, 12)

0.5 · (f(4.5|0, 12) + f(4.5|5, 52))

≈ log
0.00002

0.5 · (0.00002 + 0.0793)
≈ −8.2

5 Theoretical Properties
Intuitively, the numerator of the fraction inside logarithm in
Equation 1 measures how common (likely) a report is in its
cluster while the denominator measures how likely a report is
globally. Thus, similar to the Bayesian Truth Serum, PPTS
rewards ‘surprisingly common’ reports. In the following the-
orems, we formally discuss the incentive compatibility and
other properties of the mechanism. For better understanding,
we first discuss the theoretical properties treating cluster as-
signment step as a black box oracle and show in section 6
how the mechanism obtains the clusters while preserving in-
centive compatibility. Because of space constraints, proofs
are provided in an online anonymous appendix2.

We call a mechanism Bayes-Nash incentive compatible if
truthful reporting is an equilibrium of the mechanism i.e. if
other agents report their observations truthfully, no agent has

2https://goo.gl/3rhT3H

an incentive to deviate from the truthful strategy for any ob-
servation of the agent. This is also called the ex-post subjec-
tive equilibrium [Witkowski and Parkes, 2012].
Theorem 1. The PPTS mechanism is Bayes-Nash incen-
tive compatible, with strictly positive expected payoffs in the
truthful reporting equilibrium.

The theorem states that given other agents are truthful, it
is the best strategy for any agent to be truthful. The sketch
of the information-theoretic proof is that from many inde-
pendent and identically distributed truthful observations of
other agents, the mechanism obtains maximum likelihood es-
timates of the true global and personal factors. A simple ap-
plication of Bayes rule shows that the mechanism rewards a
report for its informativeness in predicting the personal fac-
tors, and the reward is maximized and positive for a truthful
report.

While truthful equilibrium is a desired outcome, there are
other (non-truthful) equilibria that the mechanism induces -
which is a common feature in all peer-consistency methods. It
is important to ensure that such equilibria are not more prof-
itable than the truthful equilibrium. They include heuristic
reporting strategies. As discussed in Section 3, in heuristic
reporting strategy, agents save the effort of even making an
observation and report a random sample drawn from a prob-
ability distribution.
Theorem 2. Heuristic reporting equilibria result in zero ex-
pected payoff in the mechanism.

Since both local and global MLEs will converge to com-
mon values, it will result in a reward of log 1 = 0.

There are also informed non truthful equilibria, where
agents do take the measurements but use a mapping to trans-
form their actual measurements x into their reports y. Con-
sider linear transformation mappings, where agents use a
function y = g(x) = ax + b to get their reports from their
measurements x. In the real world, this strategy corresponds
to agents systematically over reporting or under reporting
their measurements.
Theorem 3. In the PPTS mechanism, an equilibrium strategy
profile defined by a function g(x) = ax+ b is not in expecta-
tion more profitable than the truthful strategy.

The proof uses the observation that if agents use linear
transformation to report, the MLE estimates also change ac-
cordingly and reward remains unchanged. Such equilibria
don’t give higher expected reward but choosing same g re-
quires a lot of coordination among the agents and hence are
unlikely to be played. Agents unilaterally choosing a differ-
ent linear g′ get higher scores by deviating to g as well and
thus such profile is not in equilibrium.

Next, we look at the ex-ante expected score of a truthful
agent i.e. expected score before taking the measurement.
Theorem 4. The ex-ante expected score of a truthful agent
is equal to the conditional mutual information (CMI) of the
attributes and the personal factors given the global factors.

The CMI [Wyner, 1978] is the expected value of the mu-
tual information of two random variables given the value of
a third, where the mutual information of two random vari-
ables measures the mutual dependence between two random



variables. Since, CMI is always non-negative, the ex-ante ex-
pected score of a truthful agent is always non-negative. When
the CMI is 0 i.e. when the attribute is independent of the per-
sonal factors, the mechanism can’t be used to elicit truthful
information because the expected payment is 0 regardless of
the report. We discuss an interesting use of this theorem in
further sections.

6 Clusters Approximation
A crucial step in the mechanism described in Section 4 was to
assign every agent to its correct cluster. We now describe how
the mechanism achieves this without affecting the incentive
properties of the mechanism. A natural option available to
the center is to use the reports of the agents themselves to ap-
proximate the clusters. However, the question arises whether
doing this is game theoretically sound and preserves incentive
compatibility ?

Definition 1. ε-Correct Clustering Algorithm A clustering al-
gorithm is called ε-correct, if given true reports, it may assign
a true report to a wrong cluster with probability ε and ε is
such that as |Nk| → ∞, the MLE estimates {µ̂kj , σ̂

2
kj} con-

verge to {µkj , σ
2
kj} and α̂k converge to αk, ∀k.

Note that the definition doesn’t require every point to be
assigned to correct clusters but only cluster parameters to
converge to correct parameters. The conditions required for
correct estimation of gaussian mixture parameters from a fi-
nite sample are discussed in [Kalai et al., 2010],[Moitra and
Valiant, 2010]. The conditions include a lower bound on the
mixing probabilities and the statistical distance between the
cluster distributions. This implies that the more separated are
the clusters, the better are the approximations of cluster pa-
rameters with fewer samples.

Theorem 5. Given an ε- correct clustering algorithm, the
PPTS is Bayes-Nash incentive compatible even if the clusters
are approximated from the reports.

The main insight of this theorem is the following : the fact,
that the mechanism doesn’t know the cluster labels but in-
stead uses an ε-correct clustering algorithm to cluster the re-
ports of the agents, doesn’t provide any agent with a more
profitable non-truthful strategy to deviate from the truthful
equilibrium. This result addresses the concern that agents
may strategically manipulate their report to get assigned to a
different cluster and get better reward. Hence, an ε-correct
clustering algorithm can be applied to assign the clusters
while preserving incentive compatibility.

Our Clustering Technique :
In this paper, we evaluate the PPTS mechanism by using fol-
lowing technique to approximate the clusters. Consider ap-
proximating the cluster for calculation of the jth attribute
score of the agents. LetA−j be the set of all attributes exclud-
ing attribute j i.e. A−j = A \ {j}. We then apply k-means
clustering algorithm on attribute sets A−j to obtain the clus-
ters used in calculating of the jth attribute score.

It remains to discuss how one can judge if the clusters
found using the above technique are indeed fit for being used
with the PPTS mechanism in practice. For this, we make

use of Theorem 4. The theorem says that if the conditional
mutual information I(Xij ;Lij |Gj) is close to 0, then the
mechanism can’t be used for truthful elicitation. If some
trusted prior data (i.e. some true observations Xij) is avail-
able to the center for analysis, CMI estimators [Vejmelka
and Paluš, 2008],[Ver Steeg, 2000] can be used to estimate
I(Xij ;Lij |Gj) by using µ̂Lij from the approximated clus-
ters in place of Lij . A low value of this CMI estimate sug-
gests the unsuitability of the clusters for the mechanism. In
the next section, we demonstrate this method on real datasets.
To understand this in a more intuitive manner, recall that we
use attribute set A−j for approximating the clusters. If all at-
tribute pairs are independent, observations for attribute j will
be independent of the cluster approximated usingA−j , which
means that the estimated clusters can’t be used with the mech-
anism. Therefore, to find suitable clusters, we need to elicit
interdependent attributes.

7 Experimental Evaluation
A real world validation of our mechanism by using it to col-
lect new personal data is perhaps not feasible in the absence
of ground truth for performance evaluation. However, the ma-
nipulation resistant properties of the mechanism can be best
verified through simulations on real datasets. We simulate, on
three real datasets, the strategies that agents may adopt and
discuss the rewards that our mechanism decides for them.

7.1 Datasets
We selected three datasets from different domains for eval-
uating the mechanism through simulations. The Body Mea-
surements [Heinz et al., 2003] dataset contains 21 body di-
mension measurements as well as age, weight, height, and
gender of 507 individuals. The 247 men and 260 women
were mainly young adults, with a few older men and women.
The Seed [Charytanowicz et al., 2010] dataset consists of
7 measurements of 210 seeds of wheat. It has 70 samples
each of three varieties of seeds (with labels). The Air Qual-
ity [De Vito et al., 2008] dataset consists of 9358 instances
(852 complete instances) of hourly averaged responses from
an array of 5 metal oxide chemical sensors embedded in an
air quality multisensor device. The Air Quality dataset was
not collected at different places but at a single place at differ-
ent times. Another dataset that we considered for evaluation
was extracted from U.S. 1994 census data. This Census In-
come [Kohavi, 1996] has 15 personal information attributes
(continuous and categorical) about the population such as
salary class, education level, working hours, native country,
age, sex, race, occupation etc. For simulations, we can as-
sume each instance (row) in a given dataset to be reported by
a different agent and each instance having multiple attributes.
For example, in the Air Quality dataset, an instance has 5
attributes corresponding to the 5 metal oxide sensors. The
datasets act as true private observations of agents. In Seed
and Body datasets, clusters capture similarity between differ-
ent individuals and seeds. In the Air Quality dataset, clusters
capture the temporal similarity between pollution measure-
ments. As datasets with more personal attributes are hardly
available publicly, these public datasets do a good job at simu-
lating the task settings we target i.e. elicitation of continuous
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Figure 1: Cluster Distribution in Datasets

Dataset CMI Estimate
Body Measurements
Air Quality
Seed
Census Income

0.41559387
0.98769209
0.98322659
0.0194241

Table 1: Average CMI estimates for different datasets

valued unique personal attributes with normal like distribu-
tion. Figure 1 shows one attribute each in the Body Mea-
surements dataset, the Seed dataset and the air dataset along
with their normal approximations in the clusters. The body
and seed datasets are labeled but labels are used only for vi-
sualization and not for other experiments reported in the pa-
per. Air dataset is unlabeled, hence we used our approximated
clusters for visualization also.

7.2 Cluster Fitness Evaluation
To evaluate the fitness of the clusters approximated by the k-
means algorithm on these datasets, we make use of Theorem
4. The average CMI estimates (of all attributes) from the four
datasets are shown in Table 1. Note that for Census Income,
the average CMI estimate is very small (close to 0). Hence,
we can not use the clusters for eliciting the attributes of this
dataset for reasons explained in Section 6.

Results
For better understanding, we present the results in two parts
- attribute scores in Section 7.3 and cumulative rewards in
Section 7.4. We will be discussing the following statistics
of scores/rewards - mean (average of scores/rewards), Q1
(1st quartile of scores/rewards), Q2 (2nd quartile), Q3 (3rd
quartile) and F (fraction of agents receiving strictly positive
score/reward), under different simulated strategies.

7.3 Attribute Score
We simulate the following reporting strategies that can be
used by agents :

1. TR - All agents report all attributes truthfully.
2. RA - All agents report jth attribute randomly within its

true range and all other attributes truthfully.
3. R - All agents report all attributes truthfully except agent
i, who reports jth attribute randomly within its true
range but other attributes truthfully.

4. GS - All agents collude to report jth attribute using a
Gaussian distribution with true mean and variance of the
attribute and report all other attributes truthfully.

Figures 2a, 2b and 2c show statistics of attribute scores for
jth attribute in each dataset under different reporting strate-
gies of agents. This jthattribute is ‘height’ in the Body
Measurements data, ‘kernel length’ in the Seed data and
‘PT08.S2’ in the Air Quality data . Figure 2b shows results for
the Seed Measurements data. The first important point to note
is that the fraction of agents getting strictly positive score is
more than 0.92 when agents report truthfully but hardly goes
above 0.5 in other non-truthful strategies, which means that
non-truthful strategic agents do no better in expectation than
a random guesser. The other thing to note is that the mean
score when agents are non-truthful is not positive, whereas
for truthful agents, it is strictly positive with sufficient value
to distinguish it from a 0 score. A similar trend can be ob-
served for other statistics such as Q1, Q2 and Q3, where the
score for truthful reporting is always greater than that for non-
truthful strategies. In particular, we can observe that Q2 (i.e.
the median) is also strictly positive for truthful agents and
not more than 0 for non-truthful agents. Similar results can
be seen in Figures 2a and 2c for Body and Air datasets re-
spectively. It is worth mentioning here that the scores can
be appropriately scaled to cover the cost of participation and
satisfying budget constraints without affecting the incentive-
compatibility of the mechanism.

Also to confirm our earlier conclusion of the clusters not
being useful for the Census Income dataset, we computed
the rewards of agents for reporting this data truthfully and
found that only about 32% of the agents get positive score
with mean score approaching 0.

7.4 Cumulative Reward
Here, we report simulation results for the following reporting
strategies :

1. TR - All agents report all attributes truthfully.

2. RA - All agents report all attributes randomly within true
ranges of respective attributes.

3. R - All agents report all attributes truthfully except agent
i, who reports all attributes randomly within true ranges
of respective attributes.
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Figure 2: Statistics of Attribute Scores
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Figure 3: Statistics of Cumulative Rewards (Average of attribute scores of all attributes)
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Figure 4: Statistics of Cumulative Rewards (Median of attribute scores of all attributes)

4. GS - All agents collude to report all attributes using
Gaussian distributions with true means and variances of
respective attributes.

In section 4, we defined the cumulative reward of a agent as
the average of all attribute scores of this agent. Figures 3a,
3b and 3c show statistics of final or cumulative rewards. Fig-
ure 3b shows the results for Seed data. Similar to attribute
scores discussed in Section 7.3, the fraction of agents with
strictly positive cumulative reward is 0.93 when they report
truthfully and is hardly more that 0.5 when they report non-
truthfully. The mean cumulative reward for truthful reporting
strategy is strictly positive and is not more than 0 for non-
truthful strategies, attesting Theorem 1 and Theorem 2. In
Figures 4a, 4b and 4c, we show statistics of cumulative re-
wards calculated as the median of the attribute scores instead
of average of attribute scores, i.e.,

CR(i) = median
j∈{1...d}

{
rij
}

The median is another way to calculate CR from attribute
scores and makes it robust to outliers in attribute scores. We
also find the median to perform better in simulations as it
makes the minimum reward of truthful agents non-negative.

8 Conclusions
In this paper, we investigated the problem of incentiviz-
ing agents to honestly report their personal attributes such
as physiological measurements. We distinguish this prob-
lem from the problem of incentivizing agents where multiple
agents can solve a common task such as labeling a common
image. We thus extend the discussion on incentive schemes
from discrete labels for shared objects to real valued multi-
dimensional personal features. We propose the Personal-
ized Peer Truth Serum (PPTS) to address the problem. The
PPTS shows desired properties by making the honest report-
ing equilibrium more profitable than heuristic reporting equi-
libria. We further investigate the problem of finding peer



agents against whom the report of an agent is to be evaluated
and propose to exploit other reports of the agent to estimate
its peers. We guarantee that the incentive compatibility of
the mechanism continues to hold while doing so. We pro-
vide a theoretically sound practical test to determine the ap-
plicability of PPTS for a given set of attributes by estimating
the ex-ante expected payment. We empirically analyze the
performance of PPTS using estimated peers on real datasets.
The PPTS is able to incentivize/penalize honest and heuristic
reporting simulated strategies with a promising accuracy.
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